Calculation Method of Axial Compressive Capacity of 7075-T6 Aluminum Alloy Rectangular Tubes Based on Continuous Strength Method

This study systematically investigates the axial compression capacity calculation method for 7075-T6 aluminum alloy rectangular hollow section (RHS) members based on the Continuous Strength Method (CSM). Axial compression tests were conducted on nine RHS specimens using a YAW-500 electro-hydraulic s...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhiguan Huang, Hailin Li, Cheng Zhang, Junli Liu
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Buildings
Subjects:
Online Access:https://www.mdpi.com/2075-5309/15/14/2387
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study systematically investigates the axial compression capacity calculation method for 7075-T6 aluminum alloy rectangular hollow section (RHS) members based on the Continuous Strength Method (CSM). Axial compression tests were conducted on nine RHS specimens using a YAW-500 electro-hydraulic servo testing machine, and nonlinear finite element models considering material plasticity and geometric imperfections were established using ABAQUS/CAE. The numerical results showed good agreement with experimental data, verifying the model’s reliability. Parametric analysis was then performed on RHS members, leading to the development of a CSM-based capacity calculation method and a modified curve for predicting the stability reduction factors of square hollow section members. The approach combining this modified curve with Chinese codes is termed the Modified Chinese Code Method. The axial capacities calculated by the CSM-based method, Modified Chinese Code Method, EN 1999-1-1, and AASTM were compared for accuracy evaluation. The conclusions indicate that the proposed modified curve provides more accurate predictions of stability coefficients for square tubes, and the CSM-based method yields more precise capacity predictions than existing international design codes, though it may overestimate the capacity for Class 4 cross-section members and thus requires further refinement.
ISSN:2075-5309