Dynamic Propagation Characteristics of a Mode-III Interfacial Crack in Piezoelectric Bimaterials
This article presents the dynamic behavior of a semi-infinite interfacial crack in piezoelectric bimaterials under impact loading. With the help of the transform methods (the Laplace transforms and Fourier transforms), the problem is studied with the Wiener–Hopf technique. This strict proof guarante...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2022-01-01
|
Series: | Advances in Materials Science and Engineering |
Online Access: | http://dx.doi.org/10.1155/2022/1733011 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832564906984996864 |
---|---|
author | Yani Zhang Junlin Li Xiufeng Xie |
author_facet | Yani Zhang Junlin Li Xiufeng Xie |
author_sort | Yani Zhang |
collection | DOAJ |
description | This article presents the dynamic behavior of a semi-infinite interfacial crack in piezoelectric bimaterials under impact loading. With the help of the transform methods (the Laplace transforms and Fourier transforms), the problem is studied with the Wiener–Hopf technique. This strict proof guarantees the feasibility of this approach. The dynamic stress intensity factor and dynamic electric displacement intensity factor of the interfacial crack propagation characteristics are expressed. Finally, several classic numerical examples are mentioned and discussed to demonstrate that the theoretical deduction is highly accurate for interfacial crack analysis of piezoelectric bimaterials. The results show that the crack propagation is affected by the electromechanical coupling coefficient. In addition, if the velocity of the dynamic crack propagation reaches the generalized Raleigh wave speed, the dynamic stress intensity factor will disappear. Furthermore, for a given time, the ratio of the dynamic stress intensity factor to load increases with the electromechanical coupling coefficient decreasing. Numerical examples are presented to highlight the result. |
format | Article |
id | doaj-art-aa2f442c1c8946f4ba247b4bbfda9a95 |
institution | Kabale University |
issn | 1687-8442 |
language | English |
publishDate | 2022-01-01 |
publisher | Wiley |
record_format | Article |
series | Advances in Materials Science and Engineering |
spelling | doaj-art-aa2f442c1c8946f4ba247b4bbfda9a952025-02-03T01:09:53ZengWileyAdvances in Materials Science and Engineering1687-84422022-01-01202210.1155/2022/1733011Dynamic Propagation Characteristics of a Mode-III Interfacial Crack in Piezoelectric BimaterialsYani Zhang0Junlin Li1Xiufeng Xie2School of Materials Science and EngineeringSchool of Applied ScienceSchool of Applied ScienceThis article presents the dynamic behavior of a semi-infinite interfacial crack in piezoelectric bimaterials under impact loading. With the help of the transform methods (the Laplace transforms and Fourier transforms), the problem is studied with the Wiener–Hopf technique. This strict proof guarantees the feasibility of this approach. The dynamic stress intensity factor and dynamic electric displacement intensity factor of the interfacial crack propagation characteristics are expressed. Finally, several classic numerical examples are mentioned and discussed to demonstrate that the theoretical deduction is highly accurate for interfacial crack analysis of piezoelectric bimaterials. The results show that the crack propagation is affected by the electromechanical coupling coefficient. In addition, if the velocity of the dynamic crack propagation reaches the generalized Raleigh wave speed, the dynamic stress intensity factor will disappear. Furthermore, for a given time, the ratio of the dynamic stress intensity factor to load increases with the electromechanical coupling coefficient decreasing. Numerical examples are presented to highlight the result.http://dx.doi.org/10.1155/2022/1733011 |
spellingShingle | Yani Zhang Junlin Li Xiufeng Xie Dynamic Propagation Characteristics of a Mode-III Interfacial Crack in Piezoelectric Bimaterials Advances in Materials Science and Engineering |
title | Dynamic Propagation Characteristics of a Mode-III Interfacial Crack in Piezoelectric Bimaterials |
title_full | Dynamic Propagation Characteristics of a Mode-III Interfacial Crack in Piezoelectric Bimaterials |
title_fullStr | Dynamic Propagation Characteristics of a Mode-III Interfacial Crack in Piezoelectric Bimaterials |
title_full_unstemmed | Dynamic Propagation Characteristics of a Mode-III Interfacial Crack in Piezoelectric Bimaterials |
title_short | Dynamic Propagation Characteristics of a Mode-III Interfacial Crack in Piezoelectric Bimaterials |
title_sort | dynamic propagation characteristics of a mode iii interfacial crack in piezoelectric bimaterials |
url | http://dx.doi.org/10.1155/2022/1733011 |
work_keys_str_mv | AT yanizhang dynamicpropagationcharacteristicsofamodeiiiinterfacialcrackinpiezoelectricbimaterials AT junlinli dynamicpropagationcharacteristicsofamodeiiiinterfacialcrackinpiezoelectricbimaterials AT xiufengxie dynamicpropagationcharacteristicsofamodeiiiinterfacialcrackinpiezoelectricbimaterials |