Parallelized SLAM: Enhancing Mapping and Localization Through Concurrent Processing

Simultaneous Localization and Mapping (SLAM) systems face high computational demands, hindering their real-time implementation on low-end computers. An approach to addressing this challenge involves offline processing, i.e., a map of the environment map is created offline on a powerful computer and...

Full description

Saved in:
Bibliographic Details
Main Authors: Francisco J. Romero-Ramirez, Miguel Cazorla, Manuel J. Marín-Jiménez, Rafael Medina-Carnicer, Rafael Muñoz-Salinas
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/2/365
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Simultaneous Localization and Mapping (SLAM) systems face high computational demands, hindering their real-time implementation on low-end computers. An approach to addressing this challenge involves offline processing, i.e., a map of the environment map is created offline on a powerful computer and then passed to a low-end computer, which uses it for navigation, which involves fewer resources. However, even creating the map on a powerful computer is slow since SLAM is designed as a sequential process. This work proposes a parallel mapping method pSLAM for speeding up the offline creation of maps. In pSLAM, a video sequence is partitioned into multiple subsequences, with each processed independently, creating individual submaps. These submaps are subsequently merged to create a unified global map of the environment. Our experiments across a diverse range of scenarios demonstrate an increase in the processing speed of up to 6 times compared to that of the sequential approach while maintaining the same level of robustness. Furthermore, we conducted comparative analyses against state-of-the-art SLAM methods, namely UcoSLAM, OpenVSLAM, and ORB-SLAM3, with our method outperforming these across all of the scenarios evaluated.
ISSN:1424-8220