Weighted Composition Operators from Weighted Bergman Spaces to Weighted-Type Spaces on the Upper Half-Plane

Let ψ be a holomorphic mapping on the upper half-plane Π+={z∈ℂ:Jz>0} and φ be a holomorphic self-map of Π+. We characterize bounded weighted composition operators acting from the weighted Bergman space to the weighted-type space on the upper half-plane. Under a mild condition on ψ, we also charac...

Full description

Saved in:
Bibliographic Details
Main Authors: Stevo Stević, Ajay K. Sharma, S. D. Sharma
Format: Article
Language:English
Published: Wiley 2011-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2011/989625
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832561998829715456
author Stevo Stević
Ajay K. Sharma
S. D. Sharma
author_facet Stevo Stević
Ajay K. Sharma
S. D. Sharma
author_sort Stevo Stević
collection DOAJ
description Let ψ be a holomorphic mapping on the upper half-plane Π+={z∈ℂ:Jz>0} and φ be a holomorphic self-map of Π+. We characterize bounded weighted composition operators acting from the weighted Bergman space to the weighted-type space on the upper half-plane. Under a mild condition on ψ, we also characterize the compactness of these operators.
format Article
id doaj-art-a9f527925ce443158fe815189d5abf42
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2011-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-a9f527925ce443158fe815189d5abf422025-02-03T01:23:40ZengWileyAbstract and Applied Analysis1085-33751687-04092011-01-01201110.1155/2011/989625989625Weighted Composition Operators from Weighted Bergman Spaces to Weighted-Type Spaces on the Upper Half-PlaneStevo Stević0Ajay K. Sharma1S. D. Sharma2Mathematical Institute of the Serbian Academy of Sciences, Knez Mihailova 36/III, 11000 Beograd, SerbiaSchool of Mathematics, Shri Mata Vaishno Devi University, Kakryal, J & K Katra 182320, IndiaDepartment of Mathematics, University of Jammu, Jammu 180006, IndiaLet ψ be a holomorphic mapping on the upper half-plane Π+={z∈ℂ:Jz>0} and φ be a holomorphic self-map of Π+. We characterize bounded weighted composition operators acting from the weighted Bergman space to the weighted-type space on the upper half-plane. Under a mild condition on ψ, we also characterize the compactness of these operators.http://dx.doi.org/10.1155/2011/989625
spellingShingle Stevo Stević
Ajay K. Sharma
S. D. Sharma
Weighted Composition Operators from Weighted Bergman Spaces to Weighted-Type Spaces on the Upper Half-Plane
Abstract and Applied Analysis
title Weighted Composition Operators from Weighted Bergman Spaces to Weighted-Type Spaces on the Upper Half-Plane
title_full Weighted Composition Operators from Weighted Bergman Spaces to Weighted-Type Spaces on the Upper Half-Plane
title_fullStr Weighted Composition Operators from Weighted Bergman Spaces to Weighted-Type Spaces on the Upper Half-Plane
title_full_unstemmed Weighted Composition Operators from Weighted Bergman Spaces to Weighted-Type Spaces on the Upper Half-Plane
title_short Weighted Composition Operators from Weighted Bergman Spaces to Weighted-Type Spaces on the Upper Half-Plane
title_sort weighted composition operators from weighted bergman spaces to weighted type spaces on the upper half plane
url http://dx.doi.org/10.1155/2011/989625
work_keys_str_mv AT stevostevic weightedcompositionoperatorsfromweightedbergmanspacestoweightedtypespacesontheupperhalfplane
AT ajayksharma weightedcompositionoperatorsfromweightedbergmanspacestoweightedtypespacesontheupperhalfplane
AT sdsharma weightedcompositionoperatorsfromweightedbergmanspacestoweightedtypespacesontheupperhalfplane