An Adjustable Zero Vibration Input Shaping Control Scheme for Overhead Crane Systems

This article presents a modified zero vibration (ZV) input shaping technique to address the sensitivity and flexibility limitations of the classic ZV shapers commonly implemented in overhead crane applications. Starting with the classical ZV formulation, new parameters are introduced to optimize the...

Full description

Saved in:
Bibliographic Details
Main Authors: Abdullah Mohammed, Khalid Alghanim, Masood Taheri Andani
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2020/7879839
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article presents a modified zero vibration (ZV) input shaping technique to address the sensitivity and flexibility limitations of the classic ZV shapers commonly implemented in overhead crane applications. Starting with the classical ZV formulation, new parameters are introduced to optimize the control system performance according to a versatile objective function. The new shaper enhances the design flexibility and operational domain of the shaper, while it inherits the robustness properties and computational efficiency of the ZV scheme. Unlike the original ZV shaper, the proposed shaper allows for the point-to-point maneuver time to be fixed. The sensitivity analysis of the controller confirms that the new shaper effectively reduces the ZV sensitivity to the cable length variations.
ISSN:1070-9622
1875-9203