On the stability, chaos and bifurcation analysis of a discrete-time chemostat model using the piecewise constant argument method

In this paper, the dynamics of a discrete-time chemostat model were investigated. The discretization was obtained using the piecewise constant argument method. An analysis was performed to determine the existence and stability of fixed points. In addition, we have shown that the model experiences tr...

Full description

Saved in:
Bibliographic Details
Main Author: Ibraheem M. Alsulami
Format: Article
Language:English
Published: AIMS Press 2024-11-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.20241615
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, the dynamics of a discrete-time chemostat model were investigated. The discretization was obtained using the piecewise constant argument method. An analysis was performed to determine the existence and stability of fixed points. In addition, we have shown that the model experiences transcritical and period-doubling bifurcations. Two chaos control techniques, feedback control and hybrid control, were employed to control bifurcation and chaos in the model. Moreover, we provided numerical simulations to substantiate our theoretical results. This study illustrates that the piecewise constant argument method is more dynamically consistent than the forward Euler method.
ISSN:2473-6988