Einstein Probe Discovery of EP J005245.1−722843: A Rare Be–White Dwarf Binary in the Small Magellanic Cloud?
On 2024 May 27, the Wide-field X-ray Telescope on board the Space Sciences, University of Chinese Academy of Einstein Probe (EP) mission detected enhanced X-ray emission from a new transient source in the Small Magellanic Cloud during its commissioning phase. Prompt follow-up with the EP Follow-up X...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
IOP Publishing
2025-01-01
|
| Series: | The Astrophysical Journal Letters |
| Subjects: | |
| Online Access: | https://doi.org/10.3847/2041-8213/ad9580 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | On 2024 May 27, the Wide-field X-ray Telescope on board the Space Sciences, University of Chinese Academy of Einstein Probe (EP) mission detected enhanced X-ray emission from a new transient source in the Small Magellanic Cloud during its commissioning phase. Prompt follow-up with the EP Follow-up X-ray Telescope, the Swift X-ray Telescope. and NICER have revealed a very soft, thermally emitting source ( kT ~ 0.1 keV at the outburst peak) with an X-ray luminosity of L ~ 4 × 10 ^38 erg s ^−1 , labeled EP J005245.1−722843. This supersoft outburst faded very quickly in a week's time. Several emission lines and absorption edges were present in the X-ray spectrum, including deep nitrogen (0.67 keV) and oxygen (0.87 keV) absorption edges. The X-ray emission resembles the supersoft source phase of typical nova outbursts from an accreting white dwarf (WD) in a binary system, despite the X-ray source being historically associated with an O9-B0e massive star exhibiting a 17.55 day periodicity in the optical band. The discovery of this supersoft outburst suggests that EP J005245.1−722843 is a BeWD X-ray binary: an elusive evolutionary stage where two main-sequence massive stars have undergone a common envelope phase and experienced at least two episodes of mass transfer. In addition, the very short duration of the outburst and the presence of Ne features hint at a rather massive, i.e., close to the Chandrasekhar limit, Ne–O WD in the system. |
|---|---|
| ISSN: | 2041-8205 |