Machine learning-based identification of co-expressed genes in prostate cancer and CRPC and construction of prognostic models
Abstract The objective of this study was to employ machine learning to identify shared differentially expressed genes (DEGs) in prostate cancer (PCa) initiation and castration resistance, aiming to establish a robust prognostic model and enhance understanding of patient prognosis for personalized tr...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-02-01
|
| Series: | Scientific Reports |
| Subjects: | |
| Online Access: | https://doi.org/10.1038/s41598-025-90444-y |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!