Quantum machine learning with Adaptive Boson Sampling via post-selection

Abstract The implementation of large-scale universal quantum computation represents a challenging and ambitious task on the road to quantum processing of information. In recent years, an intermediate approach has been pursued to demonstrate quantum computational advantage via non-universal computati...

Full description

Saved in:
Bibliographic Details
Main Authors: Francesco Hoch, Eugenio Caruccio, Giovanni Rodari, Tommaso Francalanci, Alessia Suprano, Taira Giordani, Gonzalo Carvacho, Nicolò Spagnolo, Seid Koudia, Massimiliano Proietti, Carlo Liorni, Filippo Cerocchi, Riccardo Albiero, Niki Di Giano, Marco Gardina, Francesco Ceccarelli, Giacomo Corrielli, Ulysse Chabaud, Roberto Osellame, Massimiliano Dispenza, Fabio Sciarrino
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-55877-z
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832585584337485824
author Francesco Hoch
Eugenio Caruccio
Giovanni Rodari
Tommaso Francalanci
Alessia Suprano
Taira Giordani
Gonzalo Carvacho
Nicolò Spagnolo
Seid Koudia
Massimiliano Proietti
Carlo Liorni
Filippo Cerocchi
Riccardo Albiero
Niki Di Giano
Marco Gardina
Francesco Ceccarelli
Giacomo Corrielli
Ulysse Chabaud
Roberto Osellame
Massimiliano Dispenza
Fabio Sciarrino
author_facet Francesco Hoch
Eugenio Caruccio
Giovanni Rodari
Tommaso Francalanci
Alessia Suprano
Taira Giordani
Gonzalo Carvacho
Nicolò Spagnolo
Seid Koudia
Massimiliano Proietti
Carlo Liorni
Filippo Cerocchi
Riccardo Albiero
Niki Di Giano
Marco Gardina
Francesco Ceccarelli
Giacomo Corrielli
Ulysse Chabaud
Roberto Osellame
Massimiliano Dispenza
Fabio Sciarrino
author_sort Francesco Hoch
collection DOAJ
description Abstract The implementation of large-scale universal quantum computation represents a challenging and ambitious task on the road to quantum processing of information. In recent years, an intermediate approach has been pursued to demonstrate quantum computational advantage via non-universal computational models. A relevant example for photonic platforms has been provided by the Boson Sampling paradigm and its variants, which are known to be computationally hard while requiring at the same time only the manipulation of the generated photonic resources via linear optics and detection. Beside quantum computational advantage demonstrations, a promising direction towards possibly useful applications can be found in the field of quantum machine learning, considering the currently almost unexplored intermediate scenario between non-adaptive linear optics and universal photonic quantum computation. Here, we report the experimental implementation of quantum machine learning protocols by adding adaptivity via post-selection to a Boson Sampling platform based on universal programmable photonic circuits fabricated via femtosecond laser writing. Our experimental results demonstrate that Adaptive Boson Sampling is a viable route towards dimension-enhanced quantum machine learning with linear optical devices.
format Article
id doaj-art-a96f59696648482abb6242beb048022b
institution Kabale University
issn 2041-1723
language English
publishDate 2025-01-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-a96f59696648482abb6242beb048022b2025-01-26T12:40:48ZengNature PortfolioNature Communications2041-17232025-01-0116111110.1038/s41467-025-55877-zQuantum machine learning with Adaptive Boson Sampling via post-selectionFrancesco Hoch0Eugenio Caruccio1Giovanni Rodari2Tommaso Francalanci3Alessia Suprano4Taira Giordani5Gonzalo Carvacho6Nicolò Spagnolo7Seid Koudia8Massimiliano Proietti9Carlo Liorni10Filippo Cerocchi11Riccardo Albiero12Niki Di Giano13Marco Gardina14Francesco Ceccarelli15Giacomo Corrielli16Ulysse Chabaud17Roberto Osellame18Massimiliano Dispenza19Fabio Sciarrino20Dipartimento di Fisica, Sapienza Università di RomaDipartimento di Fisica, Sapienza Università di RomaDipartimento di Fisica, Sapienza Università di RomaDipartimento di Fisica, Sapienza Università di RomaDipartimento di Fisica, Sapienza Università di RomaDipartimento di Fisica, Sapienza Università di RomaDipartimento di Fisica, Sapienza Università di RomaDipartimento di Fisica, Sapienza Università di RomaLeonardo S.p.A., Leonardo Labs, Quantum technologies labLeonardo S.p.A., Leonardo Labs, Quantum technologies labLeonardo S.p.A., Leonardo Labs, Quantum technologies labLeonardo S.p.A., Cyber & Security Solutions DivisionDipartimento di Fisica, Politecnico di MilanoDipartimento di Fisica, Politecnico di MilanoIstituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche (IFN-CNR)Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche (IFN-CNR)Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche (IFN-CNR)DIENS, École Normale Supérieure, PSL University, CNRS, INRIAIstituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche (IFN-CNR)Leonardo S.p.A., Leonardo Labs, Quantum technologies labDipartimento di Fisica, Sapienza Università di RomaAbstract The implementation of large-scale universal quantum computation represents a challenging and ambitious task on the road to quantum processing of information. In recent years, an intermediate approach has been pursued to demonstrate quantum computational advantage via non-universal computational models. A relevant example for photonic platforms has been provided by the Boson Sampling paradigm and its variants, which are known to be computationally hard while requiring at the same time only the manipulation of the generated photonic resources via linear optics and detection. Beside quantum computational advantage demonstrations, a promising direction towards possibly useful applications can be found in the field of quantum machine learning, considering the currently almost unexplored intermediate scenario between non-adaptive linear optics and universal photonic quantum computation. Here, we report the experimental implementation of quantum machine learning protocols by adding adaptivity via post-selection to a Boson Sampling platform based on universal programmable photonic circuits fabricated via femtosecond laser writing. Our experimental results demonstrate that Adaptive Boson Sampling is a viable route towards dimension-enhanced quantum machine learning with linear optical devices.https://doi.org/10.1038/s41467-025-55877-z
spellingShingle Francesco Hoch
Eugenio Caruccio
Giovanni Rodari
Tommaso Francalanci
Alessia Suprano
Taira Giordani
Gonzalo Carvacho
Nicolò Spagnolo
Seid Koudia
Massimiliano Proietti
Carlo Liorni
Filippo Cerocchi
Riccardo Albiero
Niki Di Giano
Marco Gardina
Francesco Ceccarelli
Giacomo Corrielli
Ulysse Chabaud
Roberto Osellame
Massimiliano Dispenza
Fabio Sciarrino
Quantum machine learning with Adaptive Boson Sampling via post-selection
Nature Communications
title Quantum machine learning with Adaptive Boson Sampling via post-selection
title_full Quantum machine learning with Adaptive Boson Sampling via post-selection
title_fullStr Quantum machine learning with Adaptive Boson Sampling via post-selection
title_full_unstemmed Quantum machine learning with Adaptive Boson Sampling via post-selection
title_short Quantum machine learning with Adaptive Boson Sampling via post-selection
title_sort quantum machine learning with adaptive boson sampling via post selection
url https://doi.org/10.1038/s41467-025-55877-z
work_keys_str_mv AT francescohoch quantummachinelearningwithadaptivebosonsamplingviapostselection
AT eugeniocaruccio quantummachinelearningwithadaptivebosonsamplingviapostselection
AT giovannirodari quantummachinelearningwithadaptivebosonsamplingviapostselection
AT tommasofrancalanci quantummachinelearningwithadaptivebosonsamplingviapostselection
AT alessiasuprano quantummachinelearningwithadaptivebosonsamplingviapostselection
AT tairagiordani quantummachinelearningwithadaptivebosonsamplingviapostselection
AT gonzalocarvacho quantummachinelearningwithadaptivebosonsamplingviapostselection
AT nicolospagnolo quantummachinelearningwithadaptivebosonsamplingviapostselection
AT seidkoudia quantummachinelearningwithadaptivebosonsamplingviapostselection
AT massimilianoproietti quantummachinelearningwithadaptivebosonsamplingviapostselection
AT carloliorni quantummachinelearningwithadaptivebosonsamplingviapostselection
AT filippocerocchi quantummachinelearningwithadaptivebosonsamplingviapostselection
AT riccardoalbiero quantummachinelearningwithadaptivebosonsamplingviapostselection
AT nikidigiano quantummachinelearningwithadaptivebosonsamplingviapostselection
AT marcogardina quantummachinelearningwithadaptivebosonsamplingviapostselection
AT francescoceccarelli quantummachinelearningwithadaptivebosonsamplingviapostselection
AT giacomocorrielli quantummachinelearningwithadaptivebosonsamplingviapostselection
AT ulyssechabaud quantummachinelearningwithadaptivebosonsamplingviapostselection
AT robertoosellame quantummachinelearningwithadaptivebosonsamplingviapostselection
AT massimilianodispenza quantummachinelearningwithadaptivebosonsamplingviapostselection
AT fabiosciarrino quantummachinelearningwithadaptivebosonsamplingviapostselection