An Analysis of the Optimal Multiobjective Inventory Clustering Decision with Small Quantity and Great Variety Inventory by Applying a DPSO

When an enterprise has thousands of varieties in its inventory, the use of a single management method could not be a feasible approach. A better way to manage this problem would be to categorise inventory items into several clusters according to inventory decisions and to use different management me...

Full description

Saved in:
Bibliographic Details
Main Authors: Shen-Tsu Wang, Meng-Hua Li
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:The Scientific World Journal
Online Access:http://dx.doi.org/10.1155/2014/805879
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:When an enterprise has thousands of varieties in its inventory, the use of a single management method could not be a feasible approach. A better way to manage this problem would be to categorise inventory items into several clusters according to inventory decisions and to use different management methods for managing different clusters. The present study applies DPSO (dynamic particle swarm optimisation) to a problem of clustering of inventory items. Without the requirement of prior inventory knowledge, inventory items are automatically clustered into near optimal clustering number. The obtained clustering results should satisfy the inventory objective equation, which consists of different objectives such as total cost, backorder rate, demand relevance, and inventory turnover rate. This study integrates the above four objectives into a multiobjective equation, and inputs the actual inventory items of the enterprise into DPSO. In comparison with other clustering methods, the proposed method can consider different objectives and obtain an overall better solution to obtain better convergence results and inventory decisions.
ISSN:2356-6140
1537-744X