Accurate Localization Method Combining Optimized Hybrid Neural Networks for Geomagnetic Localization with Multi-Feature Dead Reckoning
Location-based services provide significant economic and social benefits. The ubiquity, low cost, and accessibility of geomagnetism are highly advantageous for localization. However, the existing geomagnetic localization methods suffer from location ambiguity. To address these issues, we propose a f...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Sensors |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1424-8220/25/5/1304 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Location-based services provide significant economic and social benefits. The ubiquity, low cost, and accessibility of geomagnetism are highly advantageous for localization. However, the existing geomagnetic localization methods suffer from location ambiguity. To address these issues, we propose a fusion localization algorithm based on particle swarm optimization. First, we construct a five-dimensional hybrid LSTM (5DHLSTM) neural network model, and the 5DHLSTM network structure parameters are optimized via particle swarm optimization (PSO) to achieve geomagnetic localization. The eight-dimensional BiLSTM (8DBiLSTM) algorithm is subsequently proposed for heading estimation in dead reckoning, which effectively improves the heading accuracy. Finally, fusion localization is achieved by combining geomagnetic localization with an improved pedestrian dead reckoning (IPDR) based on an extended Kalman filter (EKF). To validate the localization performance of the proposed PSO-5DHLSTM-IPDR method, several extended experiments using Xiaomi 10 and Hi Nova 9 are conducted in two different scenarios. The experimental results demonstrate that the proposed method improves localization accuracy and has good robustness and flexibility. |
|---|---|
| ISSN: | 1424-8220 |