A Gauss-Kuzmin Theorem and Related Questions for θ-Expansions

Using the natural extension for θ-expansions, we give an infinite-order-chain representation of the sequence of the incomplete quotients of these expansions. Together with the ergodic behavior of a certain homogeneous random system with complete connections, this allows us to solve a variant of Gaus...

Full description

Saved in:
Bibliographic Details
Main Authors: Gabriela Ileana Sebe, Dan Lascu
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2014/980461
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832568236927877120
author Gabriela Ileana Sebe
Dan Lascu
author_facet Gabriela Ileana Sebe
Dan Lascu
author_sort Gabriela Ileana Sebe
collection DOAJ
description Using the natural extension for θ-expansions, we give an infinite-order-chain representation of the sequence of the incomplete quotients of these expansions. Together with the ergodic behavior of a certain homogeneous random system with complete connections, this allows us to solve a variant of Gauss-Kuzmin problem for the previous fraction expansion.
format Article
id doaj-art-a8ba6b314bfb45c8bef6e4d1a568ea6d
institution Kabale University
issn 2314-8896
2314-8888
language English
publishDate 2014-01-01
publisher Wiley
record_format Article
series Journal of Function Spaces
spelling doaj-art-a8ba6b314bfb45c8bef6e4d1a568ea6d2025-02-03T00:59:29ZengWileyJournal of Function Spaces2314-88962314-88882014-01-01201410.1155/2014/980461980461A Gauss-Kuzmin Theorem and Related Questions for θ-ExpansionsGabriela Ileana Sebe0Dan Lascu1Faculty of Applied Sciences, Politehnica University of Bucharest, Splaiul Independentei 313, 060042 Bucharest, RomaniaMircea cel Batran Naval Academy, 1 Fulgerului, 900218 Constanta, RomaniaUsing the natural extension for θ-expansions, we give an infinite-order-chain representation of the sequence of the incomplete quotients of these expansions. Together with the ergodic behavior of a certain homogeneous random system with complete connections, this allows us to solve a variant of Gauss-Kuzmin problem for the previous fraction expansion.http://dx.doi.org/10.1155/2014/980461
spellingShingle Gabriela Ileana Sebe
Dan Lascu
A Gauss-Kuzmin Theorem and Related Questions for θ-Expansions
Journal of Function Spaces
title A Gauss-Kuzmin Theorem and Related Questions for θ-Expansions
title_full A Gauss-Kuzmin Theorem and Related Questions for θ-Expansions
title_fullStr A Gauss-Kuzmin Theorem and Related Questions for θ-Expansions
title_full_unstemmed A Gauss-Kuzmin Theorem and Related Questions for θ-Expansions
title_short A Gauss-Kuzmin Theorem and Related Questions for θ-Expansions
title_sort gauss kuzmin theorem and related questions for θ expansions
url http://dx.doi.org/10.1155/2014/980461
work_keys_str_mv AT gabrielaileanasebe agausskuzmintheoremandrelatedquestionsforthexpansions
AT danlascu agausskuzmintheoremandrelatedquestionsforthexpansions
AT gabrielaileanasebe gausskuzmintheoremandrelatedquestionsforthexpansions
AT danlascu gausskuzmintheoremandrelatedquestionsforthexpansions