Tiny Machine Learning and On-Device Inference: A Survey of Applications, Challenges, and Future Directions

The growth in artificial intelligence and its applications has led to increased data processing and inference requirements. Traditional cloud-based inference solutions are often used but may prove inadequate for applications requiring near-instantaneous response times. This review examines Tiny Mach...

Full description

Saved in:
Bibliographic Details
Main Authors: Soroush Heydari, Qusay H. Mahmoud
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/10/3191
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The growth in artificial intelligence and its applications has led to increased data processing and inference requirements. Traditional cloud-based inference solutions are often used but may prove inadequate for applications requiring near-instantaneous response times. This review examines Tiny Machine Learning, also known as TinyML, as an alternative to cloud-based inference. The review focuses on applications where transmission delays make traditional Internet of Things (IoT) approaches impractical, thus necessitating a solution that uses TinyML and on-device inference. This study, which follows the PRISMA guidelines, covers TinyML’s use cases for real-world applications by analyzing experimental studies and synthesizing current research on the characteristics of TinyML experiments, such as machine learning techniques and the hardware used for experiments. This review identifies existing gaps in research as well as the means to address these gaps. The review findings suggest that TinyML has a strong record of real-world usability and offers advantages over cloud-based inference, particularly in environments with bandwidth constraints and use cases that require rapid response times. This review discusses the implications of TinyML’s experimental performance for future research on TinyML applications.
ISSN:1424-8220