On the Variational Eigenvalues Which Are Not of Ljusternik-Schnirelmann Type
We discuss nonlinear homogeneous eigenvalue problems and the variational characterization of their eigenvalues. We focus on the Ljusternik-Schnirelmann method, present one possible alternative to this method and compare it with the Courant-Fischer minimax principle in the linear case. At the end we...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2012-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2012/434631 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We discuss nonlinear homogeneous eigenvalue problems and the variational characterization of their eigenvalues. We focus on the Ljusternik-Schnirelmann method, present one possible alternative to this method and compare it with the Courant-Fischer minimax principle in the linear case. At the end we present a special nonlinear eigenvalue problem possessing an eigenvalue which allows the variational characterization but is not of Ljusternik-Schnirelmann type. |
---|---|
ISSN: | 1085-3375 1687-0409 |