A Tristage Adaptive Biased Learning for Artificial Bee Colony

In recent ten years, artificial bee colony (ABC) has attracted more and more attention, and many state-of-the-art ABC variants (ABCs) have been developed by introducing different biased information to the search equations. However, the same biased information is employed in employed bee and onlooker...

Full description

Saved in:
Bibliographic Details
Main Authors: Qiaoyong Jiang, Yueqi Ma, Yanyan Lin, Jianan Cui, Xinjia Liu, Yali Wu, Lei Wang
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2021/7902783
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent ten years, artificial bee colony (ABC) has attracted more and more attention, and many state-of-the-art ABC variants (ABCs) have been developed by introducing different biased information to the search equations. However, the same biased information is employed in employed bee and onlooker bee phases, which will cause over exploitation and lead to premature convergence. To overcome this limit, an effective framework with tristage adaptive biased learning is proposed for existing ABCs (TABL + ABCs). In TABL + ABCs, the search direction in the employed bee stage is guided by learning the ranking biased information of the parent food sources, while in the onlooker bee stage, the search direction is determined by extracting the biased information of population distribution. Moreover, a deletion-restart learning strategy is designed in scout bee stage to prevent the potential risk of population stagnation. Systematic experiment results conducted on CEC2014 competition benchmark suite show that proposed TABL + ABCs perform better than recently published AEL + ABCs and ACoS + ABCs.
ISSN:1026-0226
1607-887X