Predictive Contributions of Snowmelt and Rainfall to Streamflow Variations in the Western United States

This study used long-term in situ rainfall, snow, and streamflow data to explore the predictive contributions of snowmelt and rainfall to streamflow in six watersheds over the Western United States. Analysis showed that peak snow accumulation, snow-free day, and snowmelt slope all had strong correla...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaohui Zheng, Qiguang Wang, Lihua Zhou, Qing Sun, Qi Li
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Advances in Meteorology
Online Access:http://dx.doi.org/10.1155/2018/3765098
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study used long-term in situ rainfall, snow, and streamflow data to explore the predictive contributions of snowmelt and rainfall to streamflow in six watersheds over the Western United States. Analysis showed that peak snow accumulation, snow-free day, and snowmelt slope all had strong correlation with peak streamflow, particularly in inland basins. Further analysis revealed that the variation of snow accumulation anomaly had strong lead correlation with the variation of streamflow anomaly. Over the entire Western United States, inner mountain areas had lead times of 4–10 pentads. However, in coastal areas, nearly all sites had lead times of less than one pentad. The relative contributions of rainfall and snowmelt to streamflow in different watersheds were calculated based on the snow lead time. The geographic distribution of annual relative contributions revealed that interior areas were dominated by snowmelt contribution, whereas the rainfall contribution dominated coastal areas. In the wet season, the snowmelt contribution increased in the western Pacific Northwest, whereas the rainfall contribution increased in the southeastern Pacific Northwest, southern Upper Colorado, and northern Rio Grande regions. The derived results demonstrated the predictive contributions of snowmelt and rainfall to streamflow. These findings could be considered a reference both for seasonal predictions of streamflow and for prevention of hydrological disasters. Furthermore, they will be helpful in the evaluation and improvement of hydrological and climate models.
ISSN:1687-9309
1687-9317