A Semiempirical MIMO Channel Model in Obstructed Viaduct Scenarios on High-Speed Railway
A semiempirical multiple-input multiple-output (MIMO) channel model is proposed for high-speed railway (HSR) viaduct scenarios. The proposed MIMO model is based on the combination of realistic single-input single-output (SISO) channel measurement results and a theoretical geometry-based stochastic m...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | International Journal of Antennas and Propagation |
Online Access: | http://dx.doi.org/10.1155/2014/287159 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A semiempirical multiple-input multiple-output (MIMO) channel model is proposed for high-speed railway (HSR) viaduct scenarios. The proposed MIMO model is based on the combination of realistic single-input single-output (SISO) channel measurement results and a theoretical geometry-based stochastic model (GBSM). Temporal fading characteristics involving K-factor and Doppler power spectral density (PSD) are derived from the wideband measurement under an obstructed viaduct on Zhengzhou-Xi’an HSR in China. The GBSM composed of a one-ring model and an elliptical model is employed to describe the entire propagation environment. Environment-related parameters in the GBSM are determined by the measured temporal fading properties. And a close agreement is achieved between the model results and measured data. Finally, a deterministic simulation model is established to perform the analysis of the space-time correlation function, the space-Doppler PSD, and the channel capacity for the measured scenario. This model is more realistic and particularly beneficial for the performance evaluation of MIMO systems in HSR environments. |
---|---|
ISSN: | 1687-5869 1687-5877 |