New Refinements and Improvements of Some Trigonometric Inequalities Based on Padé Approximant
A multiple-point Padé approximant method is presented for approximating and bounding some trigonometric functions in this paper. We give new refinements and improvements of some trigonometric inequalities including Jordan’s inequality, Kober’s inequality, and Becker-Stark’s inequality. The analysis...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Journal of Mathematics |
Online Access: | http://dx.doi.org/10.1155/2020/2753691 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A multiple-point Padé approximant method is presented for approximating and bounding some trigonometric functions in this paper. We give new refinements and improvements of some trigonometric inequalities including Jordan’s inequality, Kober’s inequality, and Becker-Stark’s inequality. The analysis results show that our conclusions are better than the previous conclusions. |
---|---|
ISSN: | 2314-4629 2314-4785 |