Fabrication and evaluation of some electrochemical properties of screen-printed electrodes for use in electrochemical analysis

Three types of conductive inks, including Ceres, Acheson carbon inks, and Ag/AgCl ink, were utilized to fabricate screen-printed electrodes (SPEs) on a 0.4 mm thick polyethylene terephthalate substrate using a screen-printing technique. To enhance the electrical conductivity, the printed electrodes...

Full description

Saved in:
Bibliographic Details
Main Authors: Thai Long Hoang, Trung Ngoc Phan, Xuan Anh Vu Ho, Dang Giang Chau Nguyen, Van Minh Hai HO
Format: Article
Language:English
Published: HUJOS 2024-06-01
Series:Tạp chí Khoa học Đại học Huế: Khoa học Tự nhiên
Subjects:
Online Access:https://jos.hueuni.edu.vn/index.php/hujos-ns/article/view/7226
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Three types of conductive inks, including Ceres, Acheson carbon inks, and Ag/AgCl ink, were utilized to fabricate screen-printed electrodes (SPEs) on a 0.4 mm thick polyethylene terephthalate substrate using a screen-printing technique. To enhance the electrical conductivity, the printed electrodes were cured at 80°C for 90 minutes. The basic electrochemical properties of the self-made SPEs using these conductive inks were determined, evaluated, and compared with commercial SPEs from Metrohm. Although the electroactive surface areas of the self-made SPEs were not significantly different from those of the commercial SPEs, the heterogeneous electron transfer rates on the surfaces of self-made SPEs using Ceres and Acheson inks were inferior to those of the commercial SPEs. However, after pre-condition by applying a potential of +1.2 V for 180 s in a 2 M Na2CO3 solution, the electrochemical properties of the self-made SPEs, including the active surface areas and heterogeneous electron transfer rates, were significantly improved and became better than those of the commercial SPEs.
ISSN:1859-1388
2615-9678