Quantum Vulnerability Analysis to Guide Robust Quantum Computing System Design
While quantum computers provide exciting opportunities for information processing, they currently suffer from noise during computation that is not fully understood. Incomplete noise models have led to discrepancies between quantum program success rate (SR) estimates and actual machine outcomes. For...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2024-01-01
|
Series: | IEEE Transactions on Quantum Engineering |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10361567/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832583993551224832 |
---|---|
author | Fang Qi Kaitlin N. Smith Travis LeCompte Nian-feng Tzeng Xu Yuan Frederic T. Chong Lu Peng |
author_facet | Fang Qi Kaitlin N. Smith Travis LeCompte Nian-feng Tzeng Xu Yuan Frederic T. Chong Lu Peng |
author_sort | Fang Qi |
collection | DOAJ |
description | While quantum computers provide exciting opportunities for information processing, they currently suffer from noise during computation that is not fully understood. Incomplete noise models have led to discrepancies between quantum program success rate (SR) estimates and actual machine outcomes. For example, the estimated probability of success (ESP) is the state-of-the-art metric used to gauge quantum program performance. The ESP suffers poor prediction since it fails to account for the unique combination of circuit structure, quantum state, and quantum computer properties specific to each program execution. Thus, an urgent need exists for a systematic approach that can elucidate various noise impacts and accurately and robustly predict quantum computer success rates, emphasizing application and device scaling. In this article, we propose quantum vulnerability analysis (QVA) to systematically quantify the error impact on quantum applications and address the gap between current success rate (SR) estimators and real quantum computer results. The QVA determines the cumulative quantum vulnerability (CQV) of the target quantum computation, which quantifies the quantum error impact based on the entire algorithm applied to the target quantum machine. By evaluating the CQV with well-known benchmarks on three 27-qubit quantum computers, the CQV success estimation outperforms the estimated probability of success state-of-the-art prediction technique by achieving on average six times less relative prediction error, with best cases at 30 times, for benchmarks with a real SR rate above 0.1%. Direct application of QVA has been provided that helps researchers choose a promising compiling strategy at compile time. |
format | Article |
id | doaj-art-a772d1661ba543f39767bdae415970e9 |
institution | Kabale University |
issn | 2689-1808 |
language | English |
publishDate | 2024-01-01 |
publisher | IEEE |
record_format | Article |
series | IEEE Transactions on Quantum Engineering |
spelling | doaj-art-a772d1661ba543f39767bdae415970e92025-01-28T00:02:17ZengIEEEIEEE Transactions on Quantum Engineering2689-18082024-01-01511110.1109/TQE.2023.334362510361567Quantum Vulnerability Analysis to Guide Robust Quantum Computing System DesignFang Qi0https://orcid.org/0000-0003-1447-0428Kaitlin N. Smith1https://orcid.org/0000-0002-1169-3696Travis LeCompte2https://orcid.org/0000-0002-6915-3545Nian-feng Tzeng3https://orcid.org/0000-0002-8357-6632Xu Yuan4https://orcid.org/0000-0003-3775-3033Frederic T. Chong5https://orcid.org/0000-0001-9282-4645Lu Peng6https://orcid.org/0000-0003-3545-286XTulane University, New Orleans, LA, USANorthwestern University, Evanston, IL, USALouisiana State University, Baton Rouge, LA, USAUniversity of Louisiana at Lafayette, Lafayette, LA, USAUniversity of Delaware, Newark, DE, USAUniversity of Chicago, Chicago, IL, USATulane University, New Orleans, LA, USAWhile quantum computers provide exciting opportunities for information processing, they currently suffer from noise during computation that is not fully understood. Incomplete noise models have led to discrepancies between quantum program success rate (SR) estimates and actual machine outcomes. For example, the estimated probability of success (ESP) is the state-of-the-art metric used to gauge quantum program performance. The ESP suffers poor prediction since it fails to account for the unique combination of circuit structure, quantum state, and quantum computer properties specific to each program execution. Thus, an urgent need exists for a systematic approach that can elucidate various noise impacts and accurately and robustly predict quantum computer success rates, emphasizing application and device scaling. In this article, we propose quantum vulnerability analysis (QVA) to systematically quantify the error impact on quantum applications and address the gap between current success rate (SR) estimators and real quantum computer results. The QVA determines the cumulative quantum vulnerability (CQV) of the target quantum computation, which quantifies the quantum error impact based on the entire algorithm applied to the target quantum machine. By evaluating the CQV with well-known benchmarks on three 27-qubit quantum computers, the CQV success estimation outperforms the estimated probability of success state-of-the-art prediction technique by achieving on average six times less relative prediction error, with best cases at 30 times, for benchmarks with a real SR rate above 0.1%. Direct application of QVA has been provided that helps researchers choose a promising compiling strategy at compile time.https://ieeexplore.ieee.org/document/10361567/Quantum computingresiliencesuccess rate (SR)vulnerability analysis |
spellingShingle | Fang Qi Kaitlin N. Smith Travis LeCompte Nian-feng Tzeng Xu Yuan Frederic T. Chong Lu Peng Quantum Vulnerability Analysis to Guide Robust Quantum Computing System Design IEEE Transactions on Quantum Engineering Quantum computing resilience success rate (SR) vulnerability analysis |
title | Quantum Vulnerability Analysis to Guide Robust Quantum Computing System Design |
title_full | Quantum Vulnerability Analysis to Guide Robust Quantum Computing System Design |
title_fullStr | Quantum Vulnerability Analysis to Guide Robust Quantum Computing System Design |
title_full_unstemmed | Quantum Vulnerability Analysis to Guide Robust Quantum Computing System Design |
title_short | Quantum Vulnerability Analysis to Guide Robust Quantum Computing System Design |
title_sort | quantum vulnerability analysis to guide robust quantum computing system design |
topic | Quantum computing resilience success rate (SR) vulnerability analysis |
url | https://ieeexplore.ieee.org/document/10361567/ |
work_keys_str_mv | AT fangqi quantumvulnerabilityanalysistoguiderobustquantumcomputingsystemdesign AT kaitlinnsmith quantumvulnerabilityanalysistoguiderobustquantumcomputingsystemdesign AT travislecompte quantumvulnerabilityanalysistoguiderobustquantumcomputingsystemdesign AT nianfengtzeng quantumvulnerabilityanalysistoguiderobustquantumcomputingsystemdesign AT xuyuan quantumvulnerabilityanalysistoguiderobustquantumcomputingsystemdesign AT frederictchong quantumvulnerabilityanalysistoguiderobustquantumcomputingsystemdesign AT lupeng quantumvulnerabilityanalysistoguiderobustquantumcomputingsystemdesign |