Modeling and Analysis of the Effect of Dip-Spin Coating Process Parameters on Coating Thickness Using Factorial Design Method
Statistical modeling of the dip-spin coating process to describe colloidal PTFE dispersion coating on the external surface of a small diameter hollow tube was developed by using 24 factorial design with a center point to predict the coating thickness in a range of 4–10 μm. The coating parameters inc...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2017-01-01
|
Series: | Advances in Materials Science and Engineering |
Online Access: | http://dx.doi.org/10.1155/2017/9639306 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Statistical modeling of the dip-spin coating process to describe colloidal PTFE dispersion coating on the external surface of a small diameter hollow tube was developed by using 24 factorial design with a center point to predict the coating thickness in a range of 4–10 μm. The coating parameters included viscosity, withdrawal rate, spin speed, and immersion time. The adequacy of the predicted model was verified by coefficients of determination and lack-of-fit test. Model accuracy was verified by comparing predicted values with experimental results. The significant interaction effects on the coating thickness were three-way interaction among withdrawal rate, spin speed, and immersion time and two-way interactions between viscosity and withdrawal rate, viscosity and spin speed, and viscosity and immersion time. Cube plot for coating thickness reveals a trend of increasing coating thickness towards high levels of viscosity, withdrawal rate, and immersion time and lower level of spin speed. |
---|---|
ISSN: | 1687-8434 1687-8442 |