Evaluation of Novel AI Architectures for Uncertainty Estimation

Deep learning (DL) has advanced computer vision, delivering impressive performance on intricate visual tasks. Yet, the need for accurate uncertainty estimations, particularly for out-of-distribution (OOD) inputs, persists. Our research evaluates uncertainty in Convolutional Neural Networks (CNN) an...

Full description

Saved in:
Bibliographic Details
Main Authors: Erik Pautsch, John Li, Silvio Rizzi, George K. Thiruvathukal, Maria Pantoja
Format: Article
Language:English
Published: Universidad Autónoma de Bucaramanga 2024-12-01
Series:Revista Colombiana de Computación
Subjects:
Online Access:https://revistas.unab.edu.co/index.php/rcc/article/view/5274
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832584085532311552
author Erik Pautsch
John Li
Silvio Rizzi
George K. Thiruvathukal
Maria Pantoja
author_facet Erik Pautsch
John Li
Silvio Rizzi
George K. Thiruvathukal
Maria Pantoja
author_sort Erik Pautsch
collection DOAJ
description Deep learning (DL) has advanced computer vision, delivering impressive performance on intricate visual tasks. Yet, the need for accurate uncertainty estimations, particularly for out-of-distribution (OOD) inputs, persists. Our research evaluates uncertainty in Convolutional Neural Networks (CNN) and Vision Transformers (ViT) using the MNIST and ImageNet-1K datasets. Using High-Performance (HPC) platforms, including the traditional Polaris supercomputer and AI accelerators like Cerebras CS-2 and SambaNova DataScale, we assessed the computational merits and bottlenecks of each platform. This paper delineates key considerations for using HPC in uncertainty estimations in DL, offering insights that guide the integration of algorithms and hardware for robust DL applications, especially in computer vision.
format Article
id doaj-art-a6cd17dd2559469aaaaddc342b38a65a
institution Kabale University
issn 1657-2831
2539-2115
language English
publishDate 2024-12-01
publisher Universidad Autónoma de Bucaramanga
record_format Article
series Revista Colombiana de Computación
spelling doaj-art-a6cd17dd2559469aaaaddc342b38a65a2025-01-27T19:31:14ZengUniversidad Autónoma de BucaramangaRevista Colombiana de Computación1657-28312539-21152024-12-0125210.29375/25392115.5274Evaluation of Novel AI Architectures for Uncertainty EstimationErik Pautsch0John Li1Silvio Rizzi2George K. Thiruvathukal3Maria Pantoja4https://orcid.org/0000-0002-1942-9769Loyola University ChicagoUniversity of California San DiegoArgonne National LaboratoryLoyola University ChicagoCalifornia Polytechnic State University Deep learning (DL) has advanced computer vision, delivering impressive performance on intricate visual tasks. Yet, the need for accurate uncertainty estimations, particularly for out-of-distribution (OOD) inputs, persists. Our research evaluates uncertainty in Convolutional Neural Networks (CNN) and Vision Transformers (ViT) using the MNIST and ImageNet-1K datasets. Using High-Performance (HPC) platforms, including the traditional Polaris supercomputer and AI accelerators like Cerebras CS-2 and SambaNova DataScale, we assessed the computational merits and bottlenecks of each platform. This paper delineates key considerations for using HPC in uncertainty estimations in DL, offering insights that guide the integration of algorithms and hardware for robust DL applications, especially in computer vision. https://revistas.unab.edu.co/index.php/rcc/article/view/5274UncertaintyDeep LearningEnsemblesEvidential LearningArtificial intelligence
spellingShingle Erik Pautsch
John Li
Silvio Rizzi
George K. Thiruvathukal
Maria Pantoja
Evaluation of Novel AI Architectures for Uncertainty Estimation
Revista Colombiana de Computación
Uncertainty
Deep Learning
Ensembles
Evidential Learning
Artificial intelligence
title Evaluation of Novel AI Architectures for Uncertainty Estimation
title_full Evaluation of Novel AI Architectures for Uncertainty Estimation
title_fullStr Evaluation of Novel AI Architectures for Uncertainty Estimation
title_full_unstemmed Evaluation of Novel AI Architectures for Uncertainty Estimation
title_short Evaluation of Novel AI Architectures for Uncertainty Estimation
title_sort evaluation of novel ai architectures for uncertainty estimation
topic Uncertainty
Deep Learning
Ensembles
Evidential Learning
Artificial intelligence
url https://revistas.unab.edu.co/index.php/rcc/article/view/5274
work_keys_str_mv AT erikpautsch evaluationofnovelaiarchitecturesforuncertaintyestimation
AT johnli evaluationofnovelaiarchitecturesforuncertaintyestimation
AT silviorizzi evaluationofnovelaiarchitecturesforuncertaintyestimation
AT georgekthiruvathukal evaluationofnovelaiarchitecturesforuncertaintyestimation
AT mariapantoja evaluationofnovelaiarchitecturesforuncertaintyestimation