Yeast Methylotrophy: Metabolism, Gene Regulation and Peroxisome Homeostasis

Eukaryotic methylotrophs, which are able to obtain all the carbon and energy needed for growth from methanol, are restricted to a limited number of yeast species. When these yeasts are grown on methanol as the sole carbon and energy source, the enzymes involved in methanol metabolism are strongly i...

Full description

Saved in:
Bibliographic Details
Main Authors: Hiroya Yurimoto, Masahide Oku, Yasuyoshi Sakai
Format: Article
Language:English
Published: Wiley 2011-01-01
Series:International Journal of Microbiology
Online Access:http://dx.doi.org/10.1155/2011/101298
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Eukaryotic methylotrophs, which are able to obtain all the carbon and energy needed for growth from methanol, are restricted to a limited number of yeast species. When these yeasts are grown on methanol as the sole carbon and energy source, the enzymes involved in methanol metabolism are strongly induced, and the membrane-bound organelles, peroxisomes, which contain key enzymes of methanol metabolism, proliferate massively. These features have made methylotrophic yeasts attractive hosts for the production of heterologous proteins and useful model organisms for the study of peroxisome biogenesis and degradation. In this paper, we describe recent insights into the molecular basis of yeast methylotrophy.
ISSN:1687-918X
1687-9198