From Simulation to Implementation: A Systems Model for Electric Bus Fleet Deployment in Metropolitan Areas

Urban bus fleets worldwide face urgent decarbonization requirements, with Germany targeting net-zero emissions by 2050. Current electrification research often addresses individual components—energy consumption, scheduling, or charging infrastructure—in isolation, lacking integrated frameworks that c...

Full description

Saved in:
Bibliographic Details
Main Authors: Ludger Heide, Shuyao Guo, Dietmar Göhlich
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:World Electric Vehicle Journal
Subjects:
Online Access:https://www.mdpi.com/2032-6653/16/7/378
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Urban bus fleets worldwide face urgent decarbonization requirements, with Germany targeting net-zero emissions by 2050. Current electrification research often addresses individual components—energy consumption, scheduling, or charging infrastructure—in isolation, lacking integrated frameworks that capture complex system interactions. This study presents “eflips-X”, a modular, open-source simulation framework that integrates energy consumption modeling, battery-aware block building, depot–block assignment, terminus charger placement, depot operations simulation, and smart charging optimization within a unified workflow. The framework employs empirical energy models, graph-based scheduling algorithms, and integer linear programming for depot assignment and smart charging. Applied to Berlin’s bus network—Germany’s largest—three scenarios were evaluated: maintaining existing blocks with electrification, exclusive depot charging, and small batteries with extensive terminus charging. Electric fleets need 2.1–7.1% additional vehicles compared to diesel operations, with hybrid depot-terminus charging strategies minimizing this increase. Smart charging reduces peak power demand by 49.8% on average, while different charging strategies yield distinct trade-offs between infrastructure requirements, fleet size, and operational efficiency. The framework enables systematic evaluation of electrification pathways, supporting evidence-based planning for zero-emission public transport transitions.
ISSN:2032-6653