Textual similarity for legal precedents discovery: Assessing the performance of machine learning techniques in an administrative court

The importance of legal precedents in ensuring consistent jurisprudence is undisputed. Particularly in jurisdictions following the Common law, but even in Civil law systems, uniformity in case law requires adherence to precedents. However, with the growing volume of cases, manual identification beco...

Full description

Saved in:
Bibliographic Details
Main Authors: Hugo Mentzingen, Nuno António, Fernando Bacao, Marcio Cunha
Format: Article
Language:English
Published: Elsevier 2024-11-01
Series:International Journal of Information Management Data Insights
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2667096824000363
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The importance of legal precedents in ensuring consistent jurisprudence is undisputed. Particularly in jurisdictions following the Common law, but even in Civil law systems, uniformity in case law requires adherence to precedents. However, with the growing volume of cases, manual identification becomes a bottleneck, prompting the need for automation. Leveraging the capabilities of natural language processing (NLP) and machine learning (ML), our study delves into the potential of automation in identifying similar cases indicative of precedents. Drawing from a unique, substantial dataset of legal cases from an administrative court in Brazil, we extensively evaluated over one hundred combinations of document representations and text vectorizations. Contrary to earlier studies that relied on minimal validation samples, ours employed a statistically significant sample vetted by legal experts. Our findings reveal that models focusing on granular text representations perform optimally, especially when extracting concepts and relations. Notably, while intricate models may not always guarantee superior outcomes, the importance of refining textual features cannot be understated. These findings pave the way for creating efficient decision support systems in judicial contexts and set a direction for future research aiming to integrate technology in legal decision-making.
ISSN:2667-0968