Natural Frequencies of a Cracked Beam Coupled with a Compressible Sloshing Fluid

This article describes studies into the flexural vibration of a cracked cantilevered beam in contact with a non-viscous fluid. The crack has been represented by a mass-less rotational spring, the flexibility of which has been calculated using linear fracture mechanics. The coupled system is subject...

Full description

Saved in:
Bibliographic Details
Main Authors: Michele Di Sciuva, Cecilia Surace
Format: Article
Language:English
Published: Wiley 2004-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2004/143536
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article describes studies into the flexural vibration of a cracked cantilevered beam in contact with a non-viscous fluid. The crack has been represented by a mass-less rotational spring, the flexibility of which has been calculated using linear fracture mechanics. The coupled system is subject to undisturbed boundary condition at infinity in the fluid domain. A range of different boundary conditions have been analysed such as both incompressible and compressible fluid, with and without sloshing. Various crack sizes and positions have been considered in order to assess the effect of damage in the fluid-structure interaction problem.
ISSN:1070-9622
1875-9203