Degradation State Identification of Cracked Ultrasonic Motor by Means of Fault Feature Extraction Method

The cracking of piezoelectric ceramics is the main reason of failure of an ultrasonic motor. Since the fault information is too weak to reflect the condition of piezoelectric ceramics especially in the early degradation stage, a fault feature extraction method based on multiscale morphological spect...

Full description

Saved in:
Bibliographic Details
Main Authors: Guoqing An, Hongru Li
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2019/5180590
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The cracking of piezoelectric ceramics is the main reason of failure of an ultrasonic motor. Since the fault information is too weak to reflect the condition of piezoelectric ceramics especially in the early degradation stage, a fault feature extraction method based on multiscale morphological spectrum and permutation entropy is proposed. Firstly, a signal retaining the morphological feature under different scales is reconstructed with multiscale morphological spectrum components. Then, the permutation entropy of the reconstructed signal is taken as the fault feature of piezoelectric ceramics. Furthermore, a sensitivity factor is defined to optimize the embedded dimension and delay time of permutation entropy according to double sample Z value analysis. Finally, a matrix composed of the probability distributions, obtained from permutation entropy calculation, is applied for the degradation state identification by means of probability distribution divergence. The analysis of actual test data demonstrates that this method is feasible and effective.
ISSN:1070-9622
1875-9203