Lower Bounds on the Entire Zagreb Indices of Trees

For a (molecular) graph G, the first and the second entire Zagreb indices are defined by the formulas M1εG=∑x∈VG∪EGdx2 and M2εG=∑x is either adjacent or incident to ydxdy in which dx represents the degree of a vertex or an edge x. In the current manuscript, we establish some lower bounds on the firs...

Full description

Saved in:
Bibliographic Details
Main Authors: Liang Luo, Nasrin Dehgardi, Asfand Fahad
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2020/8616725
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For a (molecular) graph G, the first and the second entire Zagreb indices are defined by the formulas M1εG=∑x∈VG∪EGdx2 and M2εG=∑x is either adjacent or incident to ydxdy in which dx represents the degree of a vertex or an edge x. In the current manuscript, we establish some lower bounds on the first and the second entire Zagreb indices and determine the extremal trees which achieve these bounds.
ISSN:1026-0226
1607-887X