A New Type of Magnetic Actuator Capable of Wall-Climbing Movement Using Inertia Force
This paper proposes a new type of a magnetic actuator that operates on a resonance energy of a mass-spring model by using an electromagnetic force. The magnetic actuator is moved by the difference in an inertia force during one period of vibration. Experimental result demonstrates that a horizontal...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | Journal of Engineering |
Online Access: | http://dx.doi.org/10.1155/2014/903178 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper proposes a new type of a magnetic actuator that operates on a resonance energy of a mass-spring model by using an electromagnetic force. The magnetic actuator is moved by the difference in an inertia force during one period of vibration. Experimental result demonstrates that a horizontal speed of the magnetic actuator was 7.4 mm/s with load mass of 50 g. We considered a method of a cable-free movement of the actuator by using two iron rails and four permanent magnets. The magnetic actuator is able to move stably a ceiling plane and a wall plane. This actuator is able to move on the plane of the magnetic materials only a function generator and a power amplifier. |
---|---|
ISSN: | 2314-4904 2314-4912 |