Scheduling on a Single Machine and Parallel Machines with Batch Deliveries and Potential Disruption
In this paper, we study several coordinated production-delivery scheduling problems with potential disruption motivated by a supply chain in the manufacturing industry. Both single-machine environment and identical parallel-machine environment are considered in the production part. The jobs finished...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2020/6840471 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we study several coordinated production-delivery scheduling problems with potential disruption motivated by a supply chain in the manufacturing industry. Both single-machine environment and identical parallel-machine environment are considered in the production part. The jobs finished on the machines are delivered to the same customer in batches. Each delivery batch has a capacity and incurs a delivery cost. There is a situation that a possible disruption in the production part may occur at some particular time and will last for a period of time with a probability. We consider both resumable case and nonresumable case where a job does not need (needs) to restart if it is disrupted for a resumable (nonresumable) case. The objective is to find a coordinated schedule of production and delivery that minimizes the expected total flow times plus the delivery costs. We first present some properties and analyze the NP-hard complexity for four various problems. For the corresponding single-machine and parallel-machine scheduling problems, pseudo-polynomial-time algorithms and fully polynomial-time approximation schemes (FPTASs) are presented in this paper, respectively. |
---|---|
ISSN: | 1076-2787 1099-0526 |