On Trees with a Given Number of Vertices of Fixed Degree and Their Two Bond Incident Degree Indices

This paper is mainly concerned with the study of two bond incident degree (BID) indices, namely the variable sum exdeg index <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>...

Full description

Saved in:
Bibliographic Details
Main Authors: Abeer M. Albalahi, Muhammad Rizwan, Akhlaq A. Bhatti, Ivan Gutman, Akbar Ali, Tariq Alraqad, Hicham Saber
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/1/23
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832589136703258624
author Abeer M. Albalahi
Muhammad Rizwan
Akhlaq A. Bhatti
Ivan Gutman
Akbar Ali
Tariq Alraqad
Hicham Saber
author_facet Abeer M. Albalahi
Muhammad Rizwan
Akhlaq A. Bhatti
Ivan Gutman
Akbar Ali
Tariq Alraqad
Hicham Saber
author_sort Abeer M. Albalahi
collection DOAJ
description This paper is mainly concerned with the study of two bond incident degree (BID) indices, namely the variable sum exdeg index <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>E</mi><msub><mi>I</mi><mi>a</mi></msub></mrow></semantics></math></inline-formula> and the general zeroth-order Randić index <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mmultiscripts><mi>R</mi><mi>α</mi><none></none><mprescripts></mprescripts><none></none><mn>0</mn></mmultiscripts></mrow></semantics></math></inline-formula>. The minimum values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>E</mi><msub><mi>I</mi><mi>a</mi></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mmultiscripts><mi>R</mi><mi>α</mi><none></none><mprescripts></mprescripts><none></none><mn>0</mn></mmultiscripts></mrow></semantics></math></inline-formula> in the class of all trees of fixed order containing no vertex of even degree are obtained for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></semantics></math></inline-formula>; also, the maximum value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mmultiscripts><mi>R</mi><mi>α</mi><none></none><mprescripts></mprescripts><none></none><mn>0</mn></mmultiscripts></mrow></semantics></math></inline-formula> in the mentioned class is determined for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula>. Moreover, in the family of all trees of fixed order and with a given number of vertices of even degrees, the extremum values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>E</mi><msub><mi>I</mi><mi>a</mi></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mmultiscripts><mi>R</mi><mi>α</mi><none></none><mprescripts></mprescripts><none></none><mn>0</mn></mmultiscripts></mrow></semantics></math></inline-formula> are found for every real number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∉</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula>. Furthermore, in the class of all trees of fixed order and with a given number of vertices of maximum degree, the minimum values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>E</mi><msub><mi>I</mi><mi>a</mi></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mmultiscripts><mi>R</mi><mi>α</mi><none></none><mprescripts></mprescripts><none></none><mn>0</mn></mmultiscripts></mrow></semantics></math></inline-formula> are determined when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> does not belong to the closed interval <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></semantics></math></inline-formula>; in the same class, the maximum values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mmultiscripts><mi>R</mi><mi>α</mi><none></none><mprescripts></mprescripts><none></none><mn>0</mn></mmultiscripts></mrow></semantics></math></inline-formula> are also found for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula>. The graphs that achieve the obtained extremal values are also determined.
format Article
id doaj-art-a598722551f34c96be85d0c31392cc37
institution Kabale University
issn 2075-1680
language English
publishDate 2024-12-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj-art-a598722551f34c96be85d0c31392cc372025-01-24T13:22:10ZengMDPI AGAxioms2075-16802024-12-011412310.3390/axioms14010023On Trees with a Given Number of Vertices of Fixed Degree and Their Two Bond Incident Degree IndicesAbeer M. Albalahi0Muhammad Rizwan1Akhlaq A. Bhatti2Ivan Gutman3Akbar Ali4Tariq Alraqad5Hicham Saber6Department of Mathematics, College of Science, University of Ha’il, Ha’il P.O. Box 2240, Saudi ArabiaDepartment of Sciences and Humanities, National University of Computer and Emerging Sciences, B-Block, Faisal Town, Lahore 54770, PakistanDepartment of Sciences and Humanities, National University of Computer and Emerging Sciences, B-Block, Faisal Town, Lahore 54770, PakistanFaculty of Science, University of Kragujevac, 34000 Kragujevac, SerbiaDepartment of Mathematics, College of Science, University of Ha’il, Ha’il P.O. Box 2240, Saudi ArabiaDepartment of Mathematics, College of Science, University of Ha’il, Ha’il P.O. Box 2240, Saudi ArabiaDepartment of Mathematics, College of Science, University of Ha’il, Ha’il P.O. Box 2240, Saudi ArabiaThis paper is mainly concerned with the study of two bond incident degree (BID) indices, namely the variable sum exdeg index <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>E</mi><msub><mi>I</mi><mi>a</mi></msub></mrow></semantics></math></inline-formula> and the general zeroth-order Randić index <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mmultiscripts><mi>R</mi><mi>α</mi><none></none><mprescripts></mprescripts><none></none><mn>0</mn></mmultiscripts></mrow></semantics></math></inline-formula>. The minimum values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>E</mi><msub><mi>I</mi><mi>a</mi></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mmultiscripts><mi>R</mi><mi>α</mi><none></none><mprescripts></mprescripts><none></none><mn>0</mn></mmultiscripts></mrow></semantics></math></inline-formula> in the class of all trees of fixed order containing no vertex of even degree are obtained for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></semantics></math></inline-formula>; also, the maximum value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mmultiscripts><mi>R</mi><mi>α</mi><none></none><mprescripts></mprescripts><none></none><mn>0</mn></mmultiscripts></mrow></semantics></math></inline-formula> in the mentioned class is determined for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula>. Moreover, in the family of all trees of fixed order and with a given number of vertices of even degrees, the extremum values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>E</mi><msub><mi>I</mi><mi>a</mi></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mmultiscripts><mi>R</mi><mi>α</mi><none></none><mprescripts></mprescripts><none></none><mn>0</mn></mmultiscripts></mrow></semantics></math></inline-formula> are found for every real number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∉</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula>. Furthermore, in the class of all trees of fixed order and with a given number of vertices of maximum degree, the minimum values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>E</mi><msub><mi>I</mi><mi>a</mi></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mmultiscripts><mi>R</mi><mi>α</mi><none></none><mprescripts></mprescripts><none></none><mn>0</mn></mmultiscripts></mrow></semantics></math></inline-formula> are determined when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> does not belong to the closed interval <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></semantics></math></inline-formula>; in the same class, the maximum values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mmultiscripts><mi>R</mi><mi>α</mi><none></none><mprescripts></mprescripts><none></none><mn>0</mn></mmultiscripts></mrow></semantics></math></inline-formula> are also found for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula>. The graphs that achieve the obtained extremal values are also determined.https://www.mdpi.com/2075-1680/14/1/23bond incident degree indicesvariable sum exdeg indexzeroth-order general Randić indexextremal valuestree
spellingShingle Abeer M. Albalahi
Muhammad Rizwan
Akhlaq A. Bhatti
Ivan Gutman
Akbar Ali
Tariq Alraqad
Hicham Saber
On Trees with a Given Number of Vertices of Fixed Degree and Their Two Bond Incident Degree Indices
Axioms
bond incident degree indices
variable sum exdeg index
zeroth-order general Randić index
extremal values
tree
title On Trees with a Given Number of Vertices of Fixed Degree and Their Two Bond Incident Degree Indices
title_full On Trees with a Given Number of Vertices of Fixed Degree and Their Two Bond Incident Degree Indices
title_fullStr On Trees with a Given Number of Vertices of Fixed Degree and Their Two Bond Incident Degree Indices
title_full_unstemmed On Trees with a Given Number of Vertices of Fixed Degree and Their Two Bond Incident Degree Indices
title_short On Trees with a Given Number of Vertices of Fixed Degree and Their Two Bond Incident Degree Indices
title_sort on trees with a given number of vertices of fixed degree and their two bond incident degree indices
topic bond incident degree indices
variable sum exdeg index
zeroth-order general Randić index
extremal values
tree
url https://www.mdpi.com/2075-1680/14/1/23
work_keys_str_mv AT abeermalbalahi ontreeswithagivennumberofverticesoffixeddegreeandtheirtwobondincidentdegreeindices
AT muhammadrizwan ontreeswithagivennumberofverticesoffixeddegreeandtheirtwobondincidentdegreeindices
AT akhlaqabhatti ontreeswithagivennumberofverticesoffixeddegreeandtheirtwobondincidentdegreeindices
AT ivangutman ontreeswithagivennumberofverticesoffixeddegreeandtheirtwobondincidentdegreeindices
AT akbarali ontreeswithagivennumberofverticesoffixeddegreeandtheirtwobondincidentdegreeindices
AT tariqalraqad ontreeswithagivennumberofverticesoffixeddegreeandtheirtwobondincidentdegreeindices
AT hichamsaber ontreeswithagivennumberofverticesoffixeddegreeandtheirtwobondincidentdegreeindices