Analysis and Prediction of Spatial and Temporal Land Use Changes in the Urban Agglomeration on the Northern Slopes of the Tianshan Mountains

This study investigates the spatiotemporal changes in land use within the urban agglomeration on the northern slopes of the Tianshan Mountains (TNUA), aiming to identify the driving factors and provide a scientific basis for regional ecological protection, rational land use planning, and sustainable...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaoxu He, Zhaojin Yan, Yicong Shi, Zhe Wei, Zhijie Liu, Rong He
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Land
Subjects:
Online Access:https://www.mdpi.com/2073-445X/14/5/1123
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study investigates the spatiotemporal changes in land use within the urban agglomeration on the northern slopes of the Tianshan Mountains (TNUA), aiming to identify the driving factors and provide a scientific basis for regional ecological protection, rational land use planning, and sustainable resource utilization. Using land use data, we analyzed transitions, dynamics, intensity, and gravity shifts in land use, examined driving mechanisms using geographic detectors, and simulated future land use patterns with the Patch-generating Land Use Simulation (PLUS) model. The results indicate that between 2010 and 2020, forest, water body, and unused land areas decreased, while cropland, grassland, and construction land expanded. The rate of land use change accelerated significantly, increasing from 0.0955% during 2010–2015 to 0.3192% during 2015–2020. The comprehensive land use dynamic degree index rose from 157.8371 to 161.1008, with Shayibake District exhibiting the most rapid growth. Precipitation, temperature, economic development, and elevation were the dominant driving factors throughout the study period. Population density had the strongest influence on the expansion of water body, while slope was the most significant factor for cropland expansion. Nighttime light was the primary driver of construction land growth. Projections for 2025, 2030, and 2035 suggest a continued decline in unused land and forest areas, alongside increases in cropland, grassland, water body, and construction land.
ISSN:2073-445X