On Mann’s Type Method for Nonexpansive and Strongly Quasinonexpansive Mappings in Hilbert Spaces

In the setting of Hilbert spaces, we study Mann’s type method to approximate strong solutions of variational inequalities. We show that these solutions are fixed points of a nonexpansive mapping and/or a strongly quasinonexpansive mapping, depending on the coefficients involved in the algorithm.

Saved in:
Bibliographic Details
Main Authors: Nawab Hussain, Giuseppe Marino, Badriah A. S. Alamri
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2015/671983
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832550580971634688
author Nawab Hussain
Giuseppe Marino
Badriah A. S. Alamri
author_facet Nawab Hussain
Giuseppe Marino
Badriah A. S. Alamri
author_sort Nawab Hussain
collection DOAJ
description In the setting of Hilbert spaces, we study Mann’s type method to approximate strong solutions of variational inequalities. We show that these solutions are fixed points of a nonexpansive mapping and/or a strongly quasinonexpansive mapping, depending on the coefficients involved in the algorithm.
format Article
id doaj-art-a54dcc4c7da44cedaec56f3f873a23ba
institution Kabale University
issn 2314-8896
2314-8888
language English
publishDate 2015-01-01
publisher Wiley
record_format Article
series Journal of Function Spaces
spelling doaj-art-a54dcc4c7da44cedaec56f3f873a23ba2025-02-03T06:06:24ZengWileyJournal of Function Spaces2314-88962314-88882015-01-01201510.1155/2015/671983671983On Mann’s Type Method for Nonexpansive and Strongly Quasinonexpansive Mappings in Hilbert SpacesNawab Hussain0Giuseppe Marino1Badriah A. S. Alamri2Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi ArabiaDepartment of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi ArabiaDepartment of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi ArabiaIn the setting of Hilbert spaces, we study Mann’s type method to approximate strong solutions of variational inequalities. We show that these solutions are fixed points of a nonexpansive mapping and/or a strongly quasinonexpansive mapping, depending on the coefficients involved in the algorithm.http://dx.doi.org/10.1155/2015/671983
spellingShingle Nawab Hussain
Giuseppe Marino
Badriah A. S. Alamri
On Mann’s Type Method for Nonexpansive and Strongly Quasinonexpansive Mappings in Hilbert Spaces
Journal of Function Spaces
title On Mann’s Type Method for Nonexpansive and Strongly Quasinonexpansive Mappings in Hilbert Spaces
title_full On Mann’s Type Method for Nonexpansive and Strongly Quasinonexpansive Mappings in Hilbert Spaces
title_fullStr On Mann’s Type Method for Nonexpansive and Strongly Quasinonexpansive Mappings in Hilbert Spaces
title_full_unstemmed On Mann’s Type Method for Nonexpansive and Strongly Quasinonexpansive Mappings in Hilbert Spaces
title_short On Mann’s Type Method for Nonexpansive and Strongly Quasinonexpansive Mappings in Hilbert Spaces
title_sort on mann s type method for nonexpansive and strongly quasinonexpansive mappings in hilbert spaces
url http://dx.doi.org/10.1155/2015/671983
work_keys_str_mv AT nawabhussain onmannstypemethodfornonexpansiveandstronglyquasinonexpansivemappingsinhilbertspaces
AT giuseppemarino onmannstypemethodfornonexpansiveandstronglyquasinonexpansivemappingsinhilbertspaces
AT badriahasalamri onmannstypemethodfornonexpansiveandstronglyquasinonexpansivemappingsinhilbertspaces