Characterisation of Harmonic Resonance Phenomenon of Multi-Parallel PV Inverter Systems: Modelling and Analysis

Solar PV inverters require output filters to reduce unwanted harmonics in their output, where LCL filters are a more economical choice than larger inductance-only filters. A drawback of these filters is that they can introduce power quality disturbances, especially at higher frequencies (above 2 kHz...

Full description

Saved in:
Bibliographic Details
Main Authors: Kasun Peiris, Sean Elphick, Jason David, Duane Robinson
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/2/443
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Solar PV inverters require output filters to reduce unwanted harmonics in their output, where LCL filters are a more economical choice than larger inductance-only filters. A drawback of these filters is that they can introduce power quality disturbances, especially at higher frequencies (above 2 kHz). This paper investigates and characterises the resonance phenomenon introduced by different filter types, i.e., LC or LCL, and identifies their behavioural change when combined with multiple parallel grid-tied PV inverter systems. MATLAB/Simulink modelling aspects of PV inverter systems related to resonance phenomenon are presented, including establishing resonance at a specific frequency where potentially large variations in the parameter selection across manufacturers may exist. In addition, a method is developed to establish output filter frequency response through measurements, which is used to develop validated solar PV harmonic models for high-frequency analysis. The low-frequency harmonic models can be used up to the resonant frequency where the current flowing through the filter capacitor is insignificant compared to the current flowing into the electricity network.
ISSN:1996-1073