Hybrid deep learning model for accurate and efficient android malware detection using DBN-GRU.

The rapid growth of Android applications has led to an increase in security threats, while traditional detection methods struggle to combat advanced malware, such as polymorphic and metamorphic variants. To address these challenges, this study introduces a hybrid deep learning model (DBN-GRU) that i...

Full description

Saved in:
Bibliographic Details
Main Authors: Heena Kauser Sk, Maria Anu V
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2025-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0310230
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The rapid growth of Android applications has led to an increase in security threats, while traditional detection methods struggle to combat advanced malware, such as polymorphic and metamorphic variants. To address these challenges, this study introduces a hybrid deep learning model (DBN-GRU) that integrates Deep Belief Networks (DBN) for static analysis and Gated Recurrent Units (GRU) for dynamic behavior modeling to enhance malware detection accuracy and efficiency. The model extracts static features (permissions, API calls, intent filters) and dynamic features (system calls, network activity, inter-process communication) from Android APKs, enabling a comprehensive analysis of application behavior.The proposed model was trained and tested on the Drebin dataset, which includes 129,013 applications (5,560 malware and 123,453 benign).Performance evaluation against NMLA-AMDCEF, MalVulDroid, and LinRegDroid demonstrated that DBN-GRU achieved 98.7% accuracy, 98.5% precision, 98.9% recall, and an AUC of 0.99, outperforming conventional models.In addition, it exhibits faster preprocessing, feature extraction, and malware classification times, making it suitable for real-time deployment.By bridging static and dynamic detection methodologies, the DBN-GRU enhances malware detection capabilities while reducing false positives and computational overhead.These findings confirm the applicability of the proposed model in real-world Android security applications, offering a scalable and high-performance malware detection solution.
ISSN:1932-6203