Enhancing classification of a large lower-limb motor imagery EEG dataset for BCI in knee pain patients

Abstract Chronic knee osteoarthritis pain significantly impacts patients’ quality of life and motor function. While motor imagery (MI)-based brain-computer interface (BCI) systems have shown promise in rehabilitation, their application to lower-limb conditions, particularly in pain patients, is unde...

Full description

Saved in:
Bibliographic Details
Main Authors: Chongwen Zuo, Yi Yin, Haochong Wang, Zhiyang Zheng, Xiaoyan Ma, Yuan Yang, Jue Wang, Shan Wang, Zi-gang Huang, Chaoqun Ye
Format: Article
Language:English
Published: Nature Portfolio 2025-08-01
Series:Scientific Data
Online Access:https://doi.org/10.1038/s41597-025-05767-2
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Chronic knee osteoarthritis pain significantly impacts patients’ quality of life and motor function. While motor imagery (MI)-based brain-computer interface (BCI) systems have shown promise in rehabilitation, their application to lower-limb conditions, particularly in pain patients, is underexplored. This study evaluates the feasibility of applying an MI-BCI model to a large dataset of knee pain patients, utilizing a novel deep learning algorithm for signal decoding. This EEG data was collected and analysed from 30 knee pain patients, revealing significant event-related (de)synchronization (ERD/ERS) during MI tasks. Traditional decoding algorithms achieved accuracies of 51.43%, 55.71%, and 76.21%, while the proposed OTFWRGD algorithm reached an average accuracy of 86.41%. This dataset highlights the potential of lower-limb MI in enhancing neural plasticity and offers valuable insights for future MI-BCI applications in lower-limb rehabilitation, especially for patients with knee pain.
ISSN:2052-4463