Bi-Lipschitz Mappings and Quasinearly Subharmonic Functions
After considering a variant of the generalized mean value inequality of quasinearly subharmonic functions, we consider certain invariance properties of quasinearly subharmonic functions. Kojić has shown that in the plane case both the class of quasinearly subharmonic functions and the class of regul...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2010-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/2010/382179 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | After considering a variant of the generalized mean value inequality of quasinearly subharmonic
functions, we consider certain invariance properties of quasinearly subharmonic functions. Kojić has shown
that in the plane case both the class of quasinearly subharmonic functions and the class of regularly oscillating
functions are invariant under conformal mappings. We give partial generalizations to her results by showing that
in ℝn, n≥2, these both classes are invariant under bi-Lipschitz mappings. |
---|---|
ISSN: | 0161-1712 1687-0425 |