Extendibility, monodromy, and local triviality for topological groupoids

A groupoid is a small category in which each morphism has an inverse. A topological groupoid is a groupoid in which both sets of objects and morphisms have topologies such that all maps of groupoid structure are continuous. The notion of monodromy groupoid of a topological groupoid generalizes thos...

Full description

Saved in:
Bibliographic Details
Main Authors: Osman Mucuk, İlhan İçen
Format: Article
Language:English
Published: Wiley 2001-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S0161171201010894
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A groupoid is a small category in which each morphism has an inverse. A topological groupoid is a groupoid in which both sets of objects and morphisms have topologies such that all maps of groupoid structure are continuous. The notion of monodromy groupoid of a topological groupoid generalizes those of fundamental groupoid and universal cover. It was earlier proved that the monodromy groupoid of a locally sectionable topological groupoid has the structure of a topological groupoid satisfying some properties. In this paper a similar problem is studied for compatible locally trivial topological groupoids.
ISSN:0161-1712
1687-0425