Stable Solutions of a Class of Degenerate Elliptic Equations

This paper deals with the second-order semi-linear degenerate elliptic equation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>y</mi><msub><mi>u</mi><mrow><mi>...

Full description

Saved in:
Bibliographic Details
Main Authors: Yin Lang, Hairong Liu
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/13/12/856
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850240527524429824
author Yin Lang
Hairong Liu
author_facet Yin Lang
Hairong Liu
author_sort Yin Lang
collection DOAJ
description This paper deals with the second-order semi-linear degenerate elliptic equation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>y</mi><msub><mi>u</mi><mrow><mi>y</mi><mi>y</mi></mrow></msub><mo>+</mo><mi>b</mi><msub><mi>u</mi><mi>y</mi></msub><mo>+</mo><msub><mo>Δ</mo><mi>x</mi></msub><mi>u</mi><mo>+</mo><msup><mrow><mo stretchy="false">|</mo><mi>u</mi><mo stretchy="false">|</mo></mrow><mrow><mi>α</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>u</mi><mo>=</mo><mn>0</mn><mo>,</mo><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><mo>∈</mo><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup><mo>×</mo><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>1</mn><mo>,</mo><mi>α</mi><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula>. We establish a Liouville theorem of stable solution of the degenerate equation mentioned above by using the energy method. The classification results for stable solutions belonging to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mn>2</mn></msup></semantics></math></inline-formula> can be thought of as an analogue of the recent results of Farina for the Lane–Emden equation.
format Article
id doaj-art-a3e26a12f11f439bb75dba0cb5049bdb
institution OA Journals
issn 2075-1680
language English
publishDate 2024-12-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj-art-a3e26a12f11f439bb75dba0cb5049bdb2025-08-20T02:00:51ZengMDPI AGAxioms2075-16802024-12-01131285610.3390/axioms13120856Stable Solutions of a Class of Degenerate Elliptic EquationsYin Lang0Hairong Liu1School of Mathematics and Statistics, Nanjing University of Science and Technology, Nanjing 210094, ChinaSchool of Mathematics and Statistics, Nanjing University of Science and Technology, Nanjing 210094, ChinaThis paper deals with the second-order semi-linear degenerate elliptic equation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>y</mi><msub><mi>u</mi><mrow><mi>y</mi><mi>y</mi></mrow></msub><mo>+</mo><mi>b</mi><msub><mi>u</mi><mi>y</mi></msub><mo>+</mo><msub><mo>Δ</mo><mi>x</mi></msub><mi>u</mi><mo>+</mo><msup><mrow><mo stretchy="false">|</mo><mi>u</mi><mo stretchy="false">|</mo></mrow><mrow><mi>α</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>u</mi><mo>=</mo><mn>0</mn><mo>,</mo><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><mo>∈</mo><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup><mo>×</mo><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>1</mn><mo>,</mo><mi>α</mi><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula>. We establish a Liouville theorem of stable solution of the degenerate equation mentioned above by using the energy method. The classification results for stable solutions belonging to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mn>2</mn></msup></semantics></math></inline-formula> can be thought of as an analogue of the recent results of Farina for the Lane–Emden equation.https://www.mdpi.com/2075-1680/13/12/856stable solutiondegenerate elliptic equationsLiouville-type theorem
spellingShingle Yin Lang
Hairong Liu
Stable Solutions of a Class of Degenerate Elliptic Equations
Axioms
stable solution
degenerate elliptic equations
Liouville-type theorem
title Stable Solutions of a Class of Degenerate Elliptic Equations
title_full Stable Solutions of a Class of Degenerate Elliptic Equations
title_fullStr Stable Solutions of a Class of Degenerate Elliptic Equations
title_full_unstemmed Stable Solutions of a Class of Degenerate Elliptic Equations
title_short Stable Solutions of a Class of Degenerate Elliptic Equations
title_sort stable solutions of a class of degenerate elliptic equations
topic stable solution
degenerate elliptic equations
Liouville-type theorem
url https://www.mdpi.com/2075-1680/13/12/856
work_keys_str_mv AT yinlang stablesolutionsofaclassofdegenerateellipticequations
AT hairongliu stablesolutionsofaclassofdegenerateellipticequations