Nonlinear Dynamics of a Nutrient-Phytoplankton Model with Time Delay

We consider a nutrient-phytoplankton model with a Holling type II functional response and a time delay. By selecting the time delay used as a bifurcation parameter, we prove that the system is stable if the delay value is lower than the critical value but unstable when it is above this value. First,...

Full description

Saved in:
Bibliographic Details
Main Authors: DeBing Mei, Min Zhao, Hengguo Yu, Chuanjun Dai, Yi Wang
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2015/939187
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider a nutrient-phytoplankton model with a Holling type II functional response and a time delay. By selecting the time delay used as a bifurcation parameter, we prove that the system is stable if the delay value is lower than the critical value but unstable when it is above this value. First, we investigate the existence and stability of the equilibria, as well as the existence of Hopf bifurcations. Second, we consider the direction, stability, and period of the periodic solutions from the steady state based on the normal form and the center manifold theory, thereby deriving explicit formulas. Finally, some numerical simulations are given to illustrate the main theoretical results.
ISSN:1026-0226
1607-887X