A Local Fractional Integral Inequality on Fractal Space Analogous to Anderson’s Inequality
Anderson's inequality (Anderson, 1958) as well as its improved version given by Fink (2003) is known to provide interesting examples of integral inequalities. In this paper, we establish local fractional integral analogue of Anderson's inequality on fractal space under some suitable condit...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2014/797561 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Anderson's inequality (Anderson, 1958) as well as its improved version given by Fink (2003) is known to provide interesting examples of integral inequalities. In this paper, we establish local fractional integral analogue of Anderson's inequality on fractal space under some suitable conditions. Moreover, we also show that the local fractional integral inequality on fractal space, which we have proved in this paper, is a new generalization of the classical Anderson's inequality. |
---|---|
ISSN: | 1085-3375 1687-0409 |