Analysis of ACAM Data for Trace Gas Retrievals during the 2011 DISCOVER-AQ Campaign
To improve the trace gas retrieval from Airborne Compact Atmospheric Mapper (ACAM) during the DSICOVER-AQ campaigns, we characterize the signal to noise ratio (SNR) of the ACAM measurement. From the standard deviations of the fitting residuals, the SNRs of ACAM nadir measurements are estimated to va...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2015-01-01
|
Series: | Journal of Spectroscopy |
Online Access: | http://dx.doi.org/10.1155/2015/827160 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To improve the trace gas retrieval from Airborne Compact Atmospheric Mapper (ACAM) during the DSICOVER-AQ campaigns, we characterize the signal to noise ratio (SNR) of the ACAM measurement. From the standard deviations of the fitting residuals, the SNRs of ACAM nadir measurements are estimated to vary from ~300 at 310 nm to ~1000 in the blue spectral region; the zenith data are noisier due to reduced levels of illumination and lower system throughput and also show many more pixels with abrupt anomalous values; therefore, a new method is developed to derive a solar irradiance reference at the top of the atmosphere (TOA) from average nadir measurements, at instrument spectral resolution and including instrument calibration characteristics. Using this reference can significantly reduce fitting residuals and improve the retrievals. This approach derives an absolute reference for direct fitting algorithms involving radiative transfer calculations and thus can be applied to both aircraft and ground-based measurements. The comparison of ACAM radiance with simulations using coincident ozonesonde and OMI data shows large wavelength-dependent biases in ACAM data, varying from ~−19% at 310 nm to 5% at 360 nm. Correcting ACAM radiance in direct-fitting based ozone profile algorithm significantly improves the consistency with OMI total ozone. |
---|---|
ISSN: | 2314-4920 2314-4939 |