Observation and Numerical Simulation of Terrain-Induced Windshear at the Hong Kong International Airport in a Planetary Boundary Layer without Temperature Inversions

Terrain-induced windshear at Hong Kong International Airport (HKIA) could be hazardous to the landing and departing aircraft. Such windshear occurring in a planetary boundary layer without temperature inversions is studied in this paper by using the data from the Terminal Doppler Weather Radar and L...

Full description

Saved in:
Bibliographic Details
Main Authors: P. W. Chan, K. K. Hon
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Advances in Meteorology
Online Access:http://dx.doi.org/10.1155/2016/1454513
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Terrain-induced windshear at Hong Kong International Airport (HKIA) could be hazardous to the landing and departing aircraft. Such windshear occurring in a planetary boundary layer without temperature inversions is studied in this paper by using the data from the Terminal Doppler Weather Radar and Light Detection and Ranging systems. A high resolution numerical model, called aviation model (AVM), is also employed to find out its capability to forecast the occurrence of such windshear. The model is found to have skills in capturing the terrain-induced windshear, including the terrain-induced microburst due to the mountains of Lantau Island. Moreover, the windshear detection algorithm as applied to the AVM output, called AVM-GLYGA, is able to give advance alert for the occurrence of low-level windshear. The model also offers new dataset, such as vertical velocity and vertical cross sections across the windshear feature, to study the terrain-induced windshear phenomena with new insights. The AVM is found to have good skills in depicting the terrain-disrupted airflow at the airport area, and more comprehensive study would be conducted to study the skills of AVM-GLYGA as compared with pilot windshear report as sky truth.
ISSN:1687-9309
1687-9317