An Extension of a result of Csiszar
We extend the results of Csiszar (Z. Wahr. 5(1966) 279-295) to a topological semigroup S. Let μ be a measure defined on S. We consider the value of α=supKcompactlimn→∞supx∈Sμn(Kx−1). First. we show that the value of α is either zero or one. If α=1, we show that there exists a sequence of elements {a...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
1986-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S0161171286000042 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832552661373681664 |
---|---|
author | P. B. Cerrito |
author_facet | P. B. Cerrito |
author_sort | P. B. Cerrito |
collection | DOAJ |
description | We extend the results of Csiszar (Z. Wahr. 5(1966) 279-295) to a topological semigroup S. Let μ be a measure defined on S. We consider the value of α=supKcompactlimn→∞supx∈Sμn(Kx−1). First. we show that the value of α is either zero or one. If α=1, we show that there exists a sequence of elements {an} In S such that μn∗δan converges vaguely to a probability measure where δ denotes point mass. In particular, we apply the results to inverse and matrix semigroups. |
format | Article |
id | doaj-art-a301d9882e094ae2af9cd47fc3de4876 |
institution | Kabale University |
issn | 0161-1712 1687-0425 |
language | English |
publishDate | 1986-01-01 |
publisher | Wiley |
record_format | Article |
series | International Journal of Mathematics and Mathematical Sciences |
spelling | doaj-art-a301d9882e094ae2af9cd47fc3de48762025-02-03T05:58:11ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251986-01-0191293710.1155/S0161171286000042An Extension of a result of CsiszarP. B. Cerrito0Department of Mathematics, University of South Florida, Tampa 33620, Florida, USAWe extend the results of Csiszar (Z. Wahr. 5(1966) 279-295) to a topological semigroup S. Let μ be a measure defined on S. We consider the value of α=supKcompactlimn→∞supx∈Sμn(Kx−1). First. we show that the value of α is either zero or one. If α=1, we show that there exists a sequence of elements {an} In S such that μn∗δan converges vaguely to a probability measure where δ denotes point mass. In particular, we apply the results to inverse and matrix semigroups.http://dx.doi.org/10.1155/S0161171286000042topological semigroupinfinite convolutions. |
spellingShingle | P. B. Cerrito An Extension of a result of Csiszar International Journal of Mathematics and Mathematical Sciences topological semigroup infinite convolutions. |
title | An Extension of a result of Csiszar |
title_full | An Extension of a result of Csiszar |
title_fullStr | An Extension of a result of Csiszar |
title_full_unstemmed | An Extension of a result of Csiszar |
title_short | An Extension of a result of Csiszar |
title_sort | extension of a result of csiszar |
topic | topological semigroup infinite convolutions. |
url | http://dx.doi.org/10.1155/S0161171286000042 |
work_keys_str_mv | AT pbcerrito anextensionofaresultofcsiszar AT pbcerrito extensionofaresultofcsiszar |