An Extension of a result of Csiszar

We extend the results of Csiszar (Z. Wahr. 5(1966) 279-295) to a topological semigroup S. Let μ be a measure defined on S. We consider the value of α=supKcompactlimn→∞supx∈Sμn(Kx−1). First. we show that the value of α is either zero or one. If α=1, we show that there exists a sequence of elements {a...

Full description

Saved in:
Bibliographic Details
Main Author: P. B. Cerrito
Format: Article
Language:English
Published: Wiley 1986-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171286000042
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832552661373681664
author P. B. Cerrito
author_facet P. B. Cerrito
author_sort P. B. Cerrito
collection DOAJ
description We extend the results of Csiszar (Z. Wahr. 5(1966) 279-295) to a topological semigroup S. Let μ be a measure defined on S. We consider the value of α=supKcompactlimn→∞supx∈Sμn(Kx−1). First. we show that the value of α is either zero or one. If α=1, we show that there exists a sequence of elements {an} In S such that μn∗δan converges vaguely to a probability measure where δ denotes point mass. In particular, we apply the results to inverse and matrix semigroups.
format Article
id doaj-art-a301d9882e094ae2af9cd47fc3de4876
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 1986-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-a301d9882e094ae2af9cd47fc3de48762025-02-03T05:58:11ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251986-01-0191293710.1155/S0161171286000042An Extension of a result of CsiszarP. B. Cerrito0Department of Mathematics, University of South Florida, Tampa 33620, Florida, USAWe extend the results of Csiszar (Z. Wahr. 5(1966) 279-295) to a topological semigroup S. Let μ be a measure defined on S. We consider the value of α=supKcompactlimn→∞supx∈Sμn(Kx−1). First. we show that the value of α is either zero or one. If α=1, we show that there exists a sequence of elements {an} In S such that μn∗δan converges vaguely to a probability measure where δ denotes point mass. In particular, we apply the results to inverse and matrix semigroups.http://dx.doi.org/10.1155/S0161171286000042topological semigroupinfinite convolutions.
spellingShingle P. B. Cerrito
An Extension of a result of Csiszar
International Journal of Mathematics and Mathematical Sciences
topological semigroup
infinite convolutions.
title An Extension of a result of Csiszar
title_full An Extension of a result of Csiszar
title_fullStr An Extension of a result of Csiszar
title_full_unstemmed An Extension of a result of Csiszar
title_short An Extension of a result of Csiszar
title_sort extension of a result of csiszar
topic topological semigroup
infinite convolutions.
url http://dx.doi.org/10.1155/S0161171286000042
work_keys_str_mv AT pbcerrito anextensionofaresultofcsiszar
AT pbcerrito extensionofaresultofcsiszar