LUOJIA Explorer PMS: Panoramic Odometry and Mapping with Structural Information

Accurate dense reconstruction of unknown spatial environments is crucial for applications such as underground exploration and planetary missions. Existing methods face challenges like observing blind spots and the difficulty of edge feature extraction in point clouds with non-repetitive scanning LiD...

Full description

Saved in:
Bibliographic Details
Main Authors: Y. Xu, C. Chen, B. Yang, L. Li, Z. Wang, S. Sun, Z. Yan, S. Wu
Format: Article
Language:English
Published: Copernicus Publications 2025-01-01
Series:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Online Access:https://isprs-archives.copernicus.org/articles/XLVIII-2-2024/485/2025/isprs-archives-XLVIII-2-2024-485-2025.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832590484024852480
author Y. Xu
Y. Xu
Y. Xu
C. Chen
C. Chen
C. Chen
B. Yang
B. Yang
B. Yang
L. Li
Z. Wang
Z. Wang
Z. Wang
S. Sun
S. Sun
S. Sun
Z. Yan
Z. Yan
Z. Yan
S. Wu
S. Wu
S. Wu
author_facet Y. Xu
Y. Xu
Y. Xu
C. Chen
C. Chen
C. Chen
B. Yang
B. Yang
B. Yang
L. Li
Z. Wang
Z. Wang
Z. Wang
S. Sun
S. Sun
S. Sun
Z. Yan
Z. Yan
Z. Yan
S. Wu
S. Wu
S. Wu
author_sort Y. Xu
collection DOAJ
description Accurate dense reconstruction of unknown spatial environments is crucial for applications such as underground exploration and planetary missions. Existing methods face challenges like observing blind spots and the difficulty of edge feature extraction in point clouds with non-repetitive scanning LiDARs. This paper first uses a novel odometry and mapping system integrating two solid-state LiDARs and an IMU to obtain distortion-compensated point clouds and corresponding poses, which are utilized to generate submaps. Our approach then leverages these accumulated submaps to efficiently extract edge features. Experimental results demonstrate that our submap-based method effectively identifies edge features within point clouds, which can be used for association with panoramas for joint optimization in the future.
format Article
id doaj-art-a2e176ea74f94fc4b823e8021a0c120d
institution Kabale University
issn 1682-1750
2194-9034
language English
publishDate 2025-01-01
publisher Copernicus Publications
record_format Article
series The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
spelling doaj-art-a2e176ea74f94fc4b823e8021a0c120d2025-01-23T14:35:10ZengCopernicus PublicationsThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences1682-17502194-90342025-01-01XLVIII-2-202448549010.5194/isprs-archives-XLVIII-2-2024-485-2025LUOJIA Explorer PMS: Panoramic Odometry and Mapping with Structural InformationY. Xu0Y. Xu1Y. Xu2C. Chen3C. Chen4C. Chen5B. Yang6B. Yang7B. Yang8L. Li9Z. Wang10Z. Wang11Z. Wang12S. Sun13S. Sun14S. Sun15Z. Yan16Z. Yan17Z. Yan18S. Wu19S. Wu20S. Wu21State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, ChinaEngineering Research Center for Spatio-temporal Data Smart Acquisition and Application, Ministry of Education of China, Wuhan University, Wuhan 430079, ChinaInstitute of Geo-spatial intelligence, Wuhan University, Wuhan 430079, ChinaState Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, ChinaEngineering Research Center for Spatio-temporal Data Smart Acquisition and Application, Ministry of Education of China, Wuhan University, Wuhan 430079, ChinaInstitute of Geo-spatial intelligence, Wuhan University, Wuhan 430079, ChinaState Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, ChinaEngineering Research Center for Spatio-temporal Data Smart Acquisition and Application, Ministry of Education of China, Wuhan University, Wuhan 430079, ChinaInstitute of Geo-spatial intelligence, Wuhan University, Wuhan 430079, ChinaInstitute of Artificial Intelligence, School of Computer Science, Wuhan University, Wuhan 430079, ChinaState Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, ChinaEngineering Research Center for Spatio-temporal Data Smart Acquisition and Application, Ministry of Education of China, Wuhan University, Wuhan 430079, ChinaInstitute of Geo-spatial intelligence, Wuhan University, Wuhan 430079, ChinaState Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, ChinaEngineering Research Center for Spatio-temporal Data Smart Acquisition and Application, Ministry of Education of China, Wuhan University, Wuhan 430079, ChinaInstitute of Geo-spatial intelligence, Wuhan University, Wuhan 430079, ChinaState Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, ChinaEngineering Research Center for Spatio-temporal Data Smart Acquisition and Application, Ministry of Education of China, Wuhan University, Wuhan 430079, ChinaInstitute of Geo-spatial intelligence, Wuhan University, Wuhan 430079, ChinaState Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, ChinaEngineering Research Center for Spatio-temporal Data Smart Acquisition and Application, Ministry of Education of China, Wuhan University, Wuhan 430079, ChinaInstitute of Geo-spatial intelligence, Wuhan University, Wuhan 430079, ChinaAccurate dense reconstruction of unknown spatial environments is crucial for applications such as underground exploration and planetary missions. Existing methods face challenges like observing blind spots and the difficulty of edge feature extraction in point clouds with non-repetitive scanning LiDARs. This paper first uses a novel odometry and mapping system integrating two solid-state LiDARs and an IMU to obtain distortion-compensated point clouds and corresponding poses, which are utilized to generate submaps. Our approach then leverages these accumulated submaps to efficiently extract edge features. Experimental results demonstrate that our submap-based method effectively identifies edge features within point clouds, which can be used for association with panoramas for joint optimization in the future.https://isprs-archives.copernicus.org/articles/XLVIII-2-2024/485/2025/isprs-archives-XLVIII-2-2024-485-2025.pdf
spellingShingle Y. Xu
Y. Xu
Y. Xu
C. Chen
C. Chen
C. Chen
B. Yang
B. Yang
B. Yang
L. Li
Z. Wang
Z. Wang
Z. Wang
S. Sun
S. Sun
S. Sun
Z. Yan
Z. Yan
Z. Yan
S. Wu
S. Wu
S. Wu
LUOJIA Explorer PMS: Panoramic Odometry and Mapping with Structural Information
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
title LUOJIA Explorer PMS: Panoramic Odometry and Mapping with Structural Information
title_full LUOJIA Explorer PMS: Panoramic Odometry and Mapping with Structural Information
title_fullStr LUOJIA Explorer PMS: Panoramic Odometry and Mapping with Structural Information
title_full_unstemmed LUOJIA Explorer PMS: Panoramic Odometry and Mapping with Structural Information
title_short LUOJIA Explorer PMS: Panoramic Odometry and Mapping with Structural Information
title_sort luojia explorer pms panoramic odometry and mapping with structural information
url https://isprs-archives.copernicus.org/articles/XLVIII-2-2024/485/2025/isprs-archives-XLVIII-2-2024-485-2025.pdf
work_keys_str_mv AT yxu luojiaexplorerpmspanoramicodometryandmappingwithstructuralinformation
AT yxu luojiaexplorerpmspanoramicodometryandmappingwithstructuralinformation
AT yxu luojiaexplorerpmspanoramicodometryandmappingwithstructuralinformation
AT cchen luojiaexplorerpmspanoramicodometryandmappingwithstructuralinformation
AT cchen luojiaexplorerpmspanoramicodometryandmappingwithstructuralinformation
AT cchen luojiaexplorerpmspanoramicodometryandmappingwithstructuralinformation
AT byang luojiaexplorerpmspanoramicodometryandmappingwithstructuralinformation
AT byang luojiaexplorerpmspanoramicodometryandmappingwithstructuralinformation
AT byang luojiaexplorerpmspanoramicodometryandmappingwithstructuralinformation
AT lli luojiaexplorerpmspanoramicodometryandmappingwithstructuralinformation
AT zwang luojiaexplorerpmspanoramicodometryandmappingwithstructuralinformation
AT zwang luojiaexplorerpmspanoramicodometryandmappingwithstructuralinformation
AT zwang luojiaexplorerpmspanoramicodometryandmappingwithstructuralinformation
AT ssun luojiaexplorerpmspanoramicodometryandmappingwithstructuralinformation
AT ssun luojiaexplorerpmspanoramicodometryandmappingwithstructuralinformation
AT ssun luojiaexplorerpmspanoramicodometryandmappingwithstructuralinformation
AT zyan luojiaexplorerpmspanoramicodometryandmappingwithstructuralinformation
AT zyan luojiaexplorerpmspanoramicodometryandmappingwithstructuralinformation
AT zyan luojiaexplorerpmspanoramicodometryandmappingwithstructuralinformation
AT swu luojiaexplorerpmspanoramicodometryandmappingwithstructuralinformation
AT swu luojiaexplorerpmspanoramicodometryandmappingwithstructuralinformation
AT swu luojiaexplorerpmspanoramicodometryandmappingwithstructuralinformation