Locally Lipschitz Composition Operators in Space of the Functions of Bounded κΦ-Variation

We give a necessary and sufficient condition on a function h:R→R under which the nonlinear composition operator H, associated with the function h, Hu(t)=h(u(t)), acts in the space κΦBV[a,b] and satisfies a local Lipschitz condition.

Saved in:
Bibliographic Details
Main Authors: Odalis Mejía, Nelson José Merentes Díaz, Beata Rzepka
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2014/606307
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832564284856467456
author Odalis Mejía
Nelson José Merentes Díaz
Beata Rzepka
author_facet Odalis Mejía
Nelson José Merentes Díaz
Beata Rzepka
author_sort Odalis Mejía
collection DOAJ
description We give a necessary and sufficient condition on a function h:R→R under which the nonlinear composition operator H, associated with the function h, Hu(t)=h(u(t)), acts in the space κΦBV[a,b] and satisfies a local Lipschitz condition.
format Article
id doaj-art-a2df0414732d4a66a17329f404fb7359
institution Kabale University
issn 2314-8896
2314-8888
language English
publishDate 2014-01-01
publisher Wiley
record_format Article
series Journal of Function Spaces
spelling doaj-art-a2df0414732d4a66a17329f404fb73592025-02-03T01:11:27ZengWileyJournal of Function Spaces2314-88962314-88882014-01-01201410.1155/2014/606307606307Locally Lipschitz Composition Operators in Space of the Functions of Bounded κΦ-VariationOdalis Mejía0Nelson José Merentes Díaz1Beata Rzepka2Departamento de Matemática, Universidad Central de Venezuela, Caracas 1220A, VenezuelaDepartamento de Matemática, Universidad Central de Venezuela, Caracas 1220A, VenezuelaDepartment of Mathematics, Rzeszów University of Technology, Al. Powstańców Warszawy 8, 35-959 Rzeszów, PolandWe give a necessary and sufficient condition on a function h:R→R under which the nonlinear composition operator H, associated with the function h, Hu(t)=h(u(t)), acts in the space κΦBV[a,b] and satisfies a local Lipschitz condition.http://dx.doi.org/10.1155/2014/606307
spellingShingle Odalis Mejía
Nelson José Merentes Díaz
Beata Rzepka
Locally Lipschitz Composition Operators in Space of the Functions of Bounded κΦ-Variation
Journal of Function Spaces
title Locally Lipschitz Composition Operators in Space of the Functions of Bounded κΦ-Variation
title_full Locally Lipschitz Composition Operators in Space of the Functions of Bounded κΦ-Variation
title_fullStr Locally Lipschitz Composition Operators in Space of the Functions of Bounded κΦ-Variation
title_full_unstemmed Locally Lipschitz Composition Operators in Space of the Functions of Bounded κΦ-Variation
title_short Locally Lipschitz Composition Operators in Space of the Functions of Bounded κΦ-Variation
title_sort locally lipschitz composition operators in space of the functions of bounded κφ variation
url http://dx.doi.org/10.1155/2014/606307
work_keys_str_mv AT odalismejia locallylipschitzcompositionoperatorsinspaceofthefunctionsofboundedkphvariation
AT nelsonjosemerentesdiaz locallylipschitzcompositionoperatorsinspaceofthefunctionsofboundedkphvariation
AT beatarzepka locallylipschitzcompositionoperatorsinspaceofthefunctionsofboundedkphvariation