A Nonhomogeneous Dirichlet Problem for a Nonlinear Pseudoparabolic Equation Arising in the Flow of Second-Grade Fluid

We study the following initial-boundary value problem {ut − μt+αt(∂/∂t)∂2u/∂x2+(γ/x)(∂u/∂x) + fu = f1x,t, 1<x<R, t>0; u(1,t)=g1(t), u(R,t)=gR(t); u(x,0)=u~0(x)}, where γ>0,R>1 are given constants and f,f1,g1,gR,u~0,α, and μ are given functions. In Part 1, we use the Galerkin method an...

Full description

Saved in:
Bibliographic Details
Main Authors: Le Thi Phuong Ngoc, Truong Thi Nhan, Nguyen Thanh Long
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2016/3875324
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832559433587097600
author Le Thi Phuong Ngoc
Truong Thi Nhan
Nguyen Thanh Long
author_facet Le Thi Phuong Ngoc
Truong Thi Nhan
Nguyen Thanh Long
author_sort Le Thi Phuong Ngoc
collection DOAJ
description We study the following initial-boundary value problem {ut − μt+αt(∂/∂t)∂2u/∂x2+(γ/x)(∂u/∂x) + fu = f1x,t, 1<x<R, t>0; u(1,t)=g1(t), u(R,t)=gR(t); u(x,0)=u~0(x)}, where γ>0,R>1 are given constants and f,f1,g1,gR,u~0,α, and μ are given functions. In Part 1, we use the Galerkin method and compactness method to prove the existence of a unique weak solution of the problem above on (0,T), for every T>0. In Part 2, we investigate asymptotic behavior of the solution as t→+∞. In Part 3, we prove the existence and uniqueness of a weak solution of problem {ut − μt+αt(∂/∂t)∂2u/∂x2+(γ/x)(∂u/∂x) + fu = f1x,t, 1<x<R, t>0; u(1,t)=g1(t), u(R,t)=gR(t)} associated with a “(η,T)-periodic condition” u(x,0)=ηu(x,T), where 0<η≤1 is given constant.
format Article
id doaj-art-a2795226b33a4b68bab4b798bff75582
institution Kabale University
issn 1026-0226
1607-887X
language English
publishDate 2016-01-01
publisher Wiley
record_format Article
series Discrete Dynamics in Nature and Society
spelling doaj-art-a2795226b33a4b68bab4b798bff755822025-02-03T01:30:09ZengWileyDiscrete Dynamics in Nature and Society1026-02261607-887X2016-01-01201610.1155/2016/38753243875324A Nonhomogeneous Dirichlet Problem for a Nonlinear Pseudoparabolic Equation Arising in the Flow of Second-Grade FluidLe Thi Phuong Ngoc0Truong Thi Nhan1Nguyen Thanh Long2University of Khanh Hoa, 01 Nguyen Chanh Str., Nha Trang, VietnamThe Faculty of Natural Basic Sciences, Vietnamese Naval Academy, 30 Tran Phu Street, Nha Trang, VietnamDepartment of Mathematics and Computer Science, University of Natural Science, Vietnam National University Ho Chi Minh City, 227 Nguyen Van Cu Str., Dist. 5, Ho Chi Minh City, VietnamWe study the following initial-boundary value problem {ut − μt+αt(∂/∂t)∂2u/∂x2+(γ/x)(∂u/∂x) + fu = f1x,t, 1<x<R, t>0; u(1,t)=g1(t), u(R,t)=gR(t); u(x,0)=u~0(x)}, where γ>0,R>1 are given constants and f,f1,g1,gR,u~0,α, and μ are given functions. In Part 1, we use the Galerkin method and compactness method to prove the existence of a unique weak solution of the problem above on (0,T), for every T>0. In Part 2, we investigate asymptotic behavior of the solution as t→+∞. In Part 3, we prove the existence and uniqueness of a weak solution of problem {ut − μt+αt(∂/∂t)∂2u/∂x2+(γ/x)(∂u/∂x) + fu = f1x,t, 1<x<R, t>0; u(1,t)=g1(t), u(R,t)=gR(t)} associated with a “(η,T)-periodic condition” u(x,0)=ηu(x,T), where 0<η≤1 is given constant.http://dx.doi.org/10.1155/2016/3875324
spellingShingle Le Thi Phuong Ngoc
Truong Thi Nhan
Nguyen Thanh Long
A Nonhomogeneous Dirichlet Problem for a Nonlinear Pseudoparabolic Equation Arising in the Flow of Second-Grade Fluid
Discrete Dynamics in Nature and Society
title A Nonhomogeneous Dirichlet Problem for a Nonlinear Pseudoparabolic Equation Arising in the Flow of Second-Grade Fluid
title_full A Nonhomogeneous Dirichlet Problem for a Nonlinear Pseudoparabolic Equation Arising in the Flow of Second-Grade Fluid
title_fullStr A Nonhomogeneous Dirichlet Problem for a Nonlinear Pseudoparabolic Equation Arising in the Flow of Second-Grade Fluid
title_full_unstemmed A Nonhomogeneous Dirichlet Problem for a Nonlinear Pseudoparabolic Equation Arising in the Flow of Second-Grade Fluid
title_short A Nonhomogeneous Dirichlet Problem for a Nonlinear Pseudoparabolic Equation Arising in the Flow of Second-Grade Fluid
title_sort nonhomogeneous dirichlet problem for a nonlinear pseudoparabolic equation arising in the flow of second grade fluid
url http://dx.doi.org/10.1155/2016/3875324
work_keys_str_mv AT lethiphuongngoc anonhomogeneousdirichletproblemforanonlinearpseudoparabolicequationarisingintheflowofsecondgradefluid
AT truongthinhan anonhomogeneousdirichletproblemforanonlinearpseudoparabolicequationarisingintheflowofsecondgradefluid
AT nguyenthanhlong anonhomogeneousdirichletproblemforanonlinearpseudoparabolicequationarisingintheflowofsecondgradefluid
AT lethiphuongngoc nonhomogeneousdirichletproblemforanonlinearpseudoparabolicequationarisingintheflowofsecondgradefluid
AT truongthinhan nonhomogeneousdirichletproblemforanonlinearpseudoparabolicequationarisingintheflowofsecondgradefluid
AT nguyenthanhlong nonhomogeneousdirichletproblemforanonlinearpseudoparabolicequationarisingintheflowofsecondgradefluid