Efficient Generative-Adversarial U-Net for Multi-Organ Medical Image Segmentation

Manual labeling of lesions in medical image analysis presents a significant challenge due to its labor-intensive and inefficient nature, which ultimately strains essential medical resources and impedes the advancement of computer-aided diagnosis. This paper introduces a novel medical image-segmentat...

Full description

Saved in:
Bibliographic Details
Main Authors: Haoran Wang, Gengshen Wu, Yi Liu
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Journal of Imaging
Subjects:
Online Access:https://www.mdpi.com/2313-433X/11/1/19
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Manual labeling of lesions in medical image analysis presents a significant challenge due to its labor-intensive and inefficient nature, which ultimately strains essential medical resources and impedes the advancement of computer-aided diagnosis. This paper introduces a novel medical image-segmentation framework named Efficient Generative-Adversarial U-Net (EGAUNet), designed to facilitate rapid and accurate multi-organ labeling. To enhance the model’s capability to comprehend spatial information, we propose the Global Spatial-Channel Attention Mechanism (GSCA). This mechanism enables the model to concentrate more effectively on regions of interest. Additionally, we have integrated Efficient Mapping Convolutional Blocks (EMCB) into the feature-learning process, allowing for the extraction of multi-scale spatial information and the adjustment of feature map channels through optimized weight values. Moreover, the proposed framework progressively enhances its performance by utilizing a generative-adversarial learning strategy, which contributes to improvements in segmentation accuracy. Consequently, EGAUNet demonstrates exemplary segmentation performance on public multi-organ datasets while maintaining high efficiency. For instance, in evaluations on the CHAOS T2SPIR dataset, EGAUNet achieves approximately <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mo>%</mo></mrow></semantics></math></inline-formula> higher performance on the Jaccard metric, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>%</mo></mrow></semantics></math></inline-formula> higher on the Dice metric, and nearly <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3</mn><mo>%</mo></mrow></semantics></math></inline-formula> higher on the precision metric in comparison to advanced networks such as Swin-Unet and TransUnet.
ISSN:2313-433X