Uniformly Almost Periodic Functions and Almost Periodic Solutions to Dynamic Equations on Time Scales
Firstly, we propose a concept of uniformly almost periodic functions on almost periodic time scales and investigate some basic properties of them. When time scale T=ℝ or ℤ, our definition of the uniformly almost periodic functions is equivalent to the classical definitions of uniformly almost period...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2011-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2011/341520 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Firstly, we propose a concept of uniformly almost periodic functions on almost periodic time scales and investigate some basic properties of them. When time scale T=ℝ or ℤ, our definition of the uniformly almost periodic functions is equivalent to the classical definitions of uniformly almost periodic functions and the uniformly almost periodic sequences, respectively. Then, based on these, we study the existence and uniqueness of almost periodic solutions and derive some fundamental conditions of admitting an exponential dichotomy to linear dynamic equations. Finally, as an application of our results, we study the existence of almost periodic solutions for an almost periodic nonlinear dynamic equations on time scales. |
---|---|
ISSN: | 1085-3375 1687-0409 |