Phosphorylated Y14 condensates as a scaffold for DNA double-strand break repair

Summary: Various DNA damage response factors form biomolecular condensates at DNA lesions. Targeting phase separation in DNA repair factor assemblies may provide a potential anticancer strategy. An RNA-binding protein, Y14/RBM8A, facilitates the repair of DNA double-strand breaks (DSBs) via its RNA-...

Full description

Saved in:
Bibliographic Details
Main Authors: Chun-Hao Su, Tzu-Wei Chuang, Hsin-Hong Yeh, Chiu-Lun Shen, Pei-Yu Hung, Ying Li, Woan-Yuh Tarn
Format: Article
Language:English
Published: Elsevier 2025-08-01
Series:iScience
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2589004225013343
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Summary: Various DNA damage response factors form biomolecular condensates at DNA lesions. Targeting phase separation in DNA repair factor assemblies may provide a potential anticancer strategy. An RNA-binding protein, Y14/RBM8A, facilitates the repair of DNA double-strand breaks (DSBs) via its RNA-mediated interaction with non-homologous end joining (NHEJ) factors. HaloTag-Y14 fusion is distributed to laser-induced DNA damage sites in an RNA-dependent manner. Serine/arginine (SR) protein kinase 1-mediated phosphorylation of Y14 was also crucial for its localization at DNA lesions and function in DSB repair. Magnesium promoted liquid-liquid phase separation of phosphorylated Y14 in vitro. Ku70/80 could partition into phosphorylated Y14 condensates. Chelation of divalent cations abolished Y14 localization and subsequent recruitment of NHEJ factors at DNA damage sites. Inhibition of Y14 phosphorylation interfered with Ku70/80 recruitment and increased the sensitivity of cancer cells to DNA damage. This study reinforces that manipulating DNA repair foci can improve the efficacy of anticancer agents.
ISSN:2589-0042