Phosphorylated Y14 condensates as a scaffold for DNA double-strand break repair
Summary: Various DNA damage response factors form biomolecular condensates at DNA lesions. Targeting phase separation in DNA repair factor assemblies may provide a potential anticancer strategy. An RNA-binding protein, Y14/RBM8A, facilitates the repair of DNA double-strand breaks (DSBs) via its RNA-...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-08-01
|
| Series: | iScience |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2589004225013343 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Summary: Various DNA damage response factors form biomolecular condensates at DNA lesions. Targeting phase separation in DNA repair factor assemblies may provide a potential anticancer strategy. An RNA-binding protein, Y14/RBM8A, facilitates the repair of DNA double-strand breaks (DSBs) via its RNA-mediated interaction with non-homologous end joining (NHEJ) factors. HaloTag-Y14 fusion is distributed to laser-induced DNA damage sites in an RNA-dependent manner. Serine/arginine (SR) protein kinase 1-mediated phosphorylation of Y14 was also crucial for its localization at DNA lesions and function in DSB repair. Magnesium promoted liquid-liquid phase separation of phosphorylated Y14 in vitro. Ku70/80 could partition into phosphorylated Y14 condensates. Chelation of divalent cations abolished Y14 localization and subsequent recruitment of NHEJ factors at DNA damage sites. Inhibition of Y14 phosphorylation interfered with Ku70/80 recruitment and increased the sensitivity of cancer cells to DNA damage. This study reinforces that manipulating DNA repair foci can improve the efficacy of anticancer agents. |
|---|---|
| ISSN: | 2589-0042 |